moschata): a review of infraspecific classifications”, In Progress in Cucurbit Genetics and Breeding Research, Proceedings of Cucurbitaceae 2004, the 8th EUCARPIA Meeting on Cucurbit Genetics and Breeding, Labeda, A. and Paris, H. S., Eds., Olomouc, Czech Republic: Palacký University in Olomouc, pp 113-118.
28. Angel R. D., Alexandra C., Theodore J. K., Tia S., Sarah M., Michael
B. K. (2020), Quantitative trait loci (QTL) analysis of fruit and agronomic traits of tropical pumpkin (Cucurbita moschta) in an organic production system, Horticulturae, 6(1):14.
29. Ashikari A, et al., (2005), Cytokinin oxidase regulates rice grain production. Science 309(5735), tr 741-745.
30. Baranek, M., Stift, G., Vollmann, J., Lelley, T. (2015), "Genetic diversity within and between the species Cucurbita pepo, C. moschata and C. maxima as revealed by RAPD markers", Cucurbit Genetics Cooperative Report, 23, tr 73 - 77.
31. Christophe Wiart., PharmD., PhD, (2012), Medicinal Plants of China, Korea, and Japan: Bioresources for Tomorrow’s drugs and Cosmestics.
32. Chukwudi, U.P. and Agbo, C.U, (2016), "Characterization and preliminary evaluation of local germplasm of telfairia occidentalis accessions in Enugu, Nigeria", Journal of Tropical Agriculture, Food, Environment and Extension, 15(2), pp 15 - 22.
33. Conti S, Villari G, Amico E, Caruso G, (2015), "Effects of productionsystem and transplanting time on yield, quality and antioxidant contentof organic winter squash (Cucurbita moschata Duch.)", Sci Hortic Amst183, pp 136 - 143.
34. Daniela Priori, Daniel Zizumbo Villarreal, Víctor Manuel de Jesús Canché Ek, Verónica Limones-Briones and Rosa Lía Barbieri (2018), Evolutionary dynamics of Cucurbita argyrosperma from the
Có thể bạn quan tâm!
- Các Tổ Hợp Lai Bí Đỏ Tạo Quần Thể Lai Theo Hướng Hàm Lượng Chất Khô Cao
- Hàm Lượng Chất Khô Của 120 Dòng F3 Bí Đỏ
- Qtl Và Chỉ Thi Ḷ Iên Kết Vớ I Qtl Qui Điṇ H Hàm Lươn
- Danh Sách Chỉ Thị Adn Sử Dụng Trong Nghiên Cứu ( 300 Chỉ Thị Định Vị Trên Hệ Gen Bí Đỏ).
- Danh Sách 300 Chỉ Thị Adn Định Vị Trên Hệ Gen Bí Đỏ Sử Dụng Trong Nghiên Cứu
- Nghiên cứu ứng dụng chỉ thị phân tử phục vụ chọn tạo giống bí đỏ Cucurbita spp. có hàm lượng chất khô cao - 19
Xem toàn bộ 201 trang tài liệu này.
Mesoamerican domestication center using SSR molecular markers. Pesq. agropec.bras, Brasília, v.53, n.3, pp 287-297. DOI: 10.1590/S0100-204X2018000300003.
35. Decker-Walters, D. S., Chung, S. M., and Staub, J. E. (2004), “Plastid sequence evolution: a new pattern of nucleotide substitutions in the Cucurbitaceae”, J. Molec. Evol., 58, pp 606 - 614.
36. Decker-Walters, D. S., Staub, J. E., Chung, S. M., Nalata, E., and Quemada, H. D. (2002), “Diversity in free-living populations of Cucurbita pepo (Cucurbitaeae) as asseses by random amplified polymorphic DNA”, Syst. Bot., 27, pp 19 - 28.
37. Dillehay, T.D., Rossen, J., Andres, T.C., Williams, D.E. (2007), “Preceramic adoption of peanut, squash, and cotton in Northern Peru", Science Jour 316, pp 1890 - 1893.
38. Dos Santos, M.H., Rodrigues, R., Simões Azeredo Gonçalves, L., Pombo Sudré, C., Gonzaga Pereira, M., (2016), "Agrobiodiversity in Cucurbita spp. landraces collected in Rio de Janeiro assessed by molecular markers", Crop Breeding and Applied Biotechnology 12, pp 96 - 103.
39. Doyle JJ, Doyle JL (1987), "A rapid DNA isolation procedure for small quantities of fresh leaf tissue", Phytochem Bull 19, pp 11 - 15.
40. Duke. J. A. and Ayensu. E. S, (1985), Medicinal Plants of China Reference Publications, Inc. ISBN 0-917256-20-4.
41. Eguiarte Le., HS Hernández-Rosales, J. Barrera-Redondo, (2018), "Domestication, diversity, genetic and genomic resources of Mexico: The case of pumpkins", TIP Rev Esp Cienc Quim Biol., 21(2), pp 85 - 101.
42. Elizabeth, T.M., (2001), Plant spacing demonstration plot with Jack-o- Lantern and giant pumpkins. In: Morales, M.R. (ed.), Midwestern
Vegetable Variety Trial Report, pp 225-227.
43. Enneb S., S. Drine, M. Bagues, T. Triki, F. Boussora, F. Guasmi, K. Nagaz, A. Ferchichi (2020), Phytochemical profiles and nutritional composition of squash (Cucurbita moschata D.) from Tunisia. South African Journal of Botany. DOI: 10.1016/j.sajb.2019.12.011.
44. Esteras, C., Gomez, P., Monforte, A., Blanca, J., Vicent Dólera, N., Roig, C., Nuez, F., Picó, B (2012), High-throughput SNP genotyping in Cucurbita pepo for map construction and quantitative trait loci mapping. BMC Genom, 13, pp 80.
45. Ferriol, M., M.B. Pico and F. Nuez., (2003), "Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers", Genet. Resour. Crop Evol., 50, pp 227-238.
46. Ferriol, M., and Picó, B., (2008), “Pumpkin and winter squash,” in VegetablesI, Handbook of Plant Breeding, Vol. 1, eds F. B. Whitfield, and J. H. Last (New York, NY: Springer), pp 317-349.
47. Gerardus J. H. Grubben (2004), Vegetables (Prota 2), Plant Resources of Tropical Africa, pp 259 - 278.
48. Gong L, Paris HS, Nee MH, Stift G, Pachner M, Vollmann J, Lelley T (2012), Genetic relationships and evolution in Cucurbita pepo (pumpkin, squash gourd) as revealed by simple sequence repeat polymorphisms. Theor Appl Genet, 124, pp 875-91.
49. Govindaraj, M., Vetriventhan, M., Srinivasan, M. (2017), "Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives", Genetics Research International.
50. Guoyu Zhang, Yi Ren, Honghe Sun1, Shaogui Guo, Fan Zhang, Jie Zhang, Haiying Zhang, Zhangcai Jia, Zhangjun Fei, Yong Xu and Haizhen Li (2015), Researcharticle open accessa high-density genetic map for anchoringgenome sequences and identifying qtlsassociated with
dwarf vine in pumpkin(cucurbita maxima duch.), BMC Genomics, 16,1101. DOI 10.1186/s12864-015-2312-8.
51. Gwanama, M.T. Labuschagne & A.M. Botha (2000), Analysis of genetic variation in Cucurbita moschata by random amplified polymorphic DNA (RAPD) markers. Euphytica volume 113, pages19- 24.
52. Harry S.P., D.F. Adi, K.R. Umesh, D. Ryan and L. Amnon (2015), "Genetic relationships in Cucurbita pepo (pumpkin, squash, gourd) as viewed with high frequency oligonucleotide-targeting active gene (HFO-TAG) markers", Genet. Resour. Crop Evol., 62, pp 1095 - 1111.
53. Harvey, W. J., Grant, D. G. and Lammerink, J. P. (1997), Physical and sensory changes during the development and storage of buttercup squash. New Zealand Journal of Crop and Horticultural Science 25(4), pp 341-351.
54. Hussain, A., Kausar, T., Din, A. et al (2021), Determination of total phenolic, carotenoid, and mineral contents in peel, flesh, and seed of pumpkin (Cucurbita maxim). Journal of Food Processing and Preservation. https://doi.org/10.1111/jfpp.15542.
55. Jeffrey C. (2001), “Cucurbita", In Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops, Hanelt, P., Ed., Vol.3, Berlin: Springer-Verlag, pp 1510 - 1557.
56. Junxin Wu, Zhijian Chang, Qingshan Wu, Haixian Zhan, Shulian Xie (2011), “Molecular diversity of Chinese Cucurbita moschata germplasm collections detected by AFLP markers”, Science in Horticulture, 128, pp 7 - 13.
57. Karolina K., Ewelina H., Aleksandra K., Katarzyna N., Grzegorz B. (2020), Identification of fruit-associated QTLs in winter squash (Cucurbita maxima Duchesne) using recombinant inbred lines. Genes,
11(149):
58. Karolina Kaźmińska, Krzysztof Sobieszek, Małgorzata Targońska, Mleksandra Korzeniewska (2016), "Genetic Diversity Analysis of Winter Squash Accessions Using SSR Markers", In Proceedings of Cucurbitaceae 2016, the XIth EUCARPIA Meeting on Genetics and Breeding of Cucurbitaceae, July 24-28.
59. Katzir, N., Tadmor, Y., Tzuri, G., Leshzeshen, E., Mozes-Daube, N., Danin-Poleg, Y., and Paris, H. S., (2000), “Further ISSR and preliminary SSR analysis of relationships among accessions of Cucurbita pepo”, Acta Hort., 510, pp 433 - 439.
60. Kazminska, Hallmann, E., Korzeniewska, A. et al (2020), Identification of fruit associated QTLs in winter squask (Cucurbita maxima Duchesne) using recombinant inbred lines. Genes, 11, pp 149.
61. Kazminska, K., K. Sobieszek, M. Targonska-Karasek, A. Korzeniewska, K. Niemirowicz-Szczytt and G. Bartoszewski (2017), "Genetic diversity assessment of a winter squash and pumpkin (Cucurbita maxima Duchesne) germplasm collection based on genomic Cucurbitaconserved SSR markers", Sci. Hort., (219), pp 37 - 44.
62. Kong, Q., J. Chen, Y. Liu, Y. Ma, P. Liu, S. Wu, Y. Huang and Z. Bie. (2015), "Genetic diversity of Cucurbita rootstock germplasm as assessed using simple sequence repeat markers", Sci. Hort., 175, pp 150
- 155.
63. L. Gong, G. Stift, R. Kofler, M. Pachner, T. Lelley (2008). Microsatellites for the genus Cucurbita and an SSR-based geneticlinkage map of Cucurbita pepo L., Theor Appl Genet, 117: pp 37 - 48.
64. Lakshman Naik, M., V. M. Prasat (2016), "Genetic variability, heitability and genetic advance in pumpkin (cucurbita moschata Duch
Ex Poir)", Environment and Ecology, 34 (2), pp 569 - 272.
65. Lawrence Stephen Fayeun, Lateef Akinkunle Hammed, Olusegun Adebayo Oduwaye, Jide Umar Madike (2016), "Estimates of genetic variability for seedling traits in fluted pumpkin", Plant Breed. Biotech, 4(2), pp 262 - 270.
66. Leffingwell JC, Alford ED, Leffingwell D (2016), "Identification of thevolatile constituents of raw pumpkin (Cucurbita pepo L.) by dynamicheadspace analyses", Leffingwell Rep 9(1), pp 1 - 14.
67. Lincoln SE, Daly MJ, Lander ES (1993). Mapping Genes Controlling Quantitative Traits: Using MAPMAKER/QTL Version 1.1, A Tutorial and Reference Manual, A Whitehead Institute for Biomedical, Research Technical Report, Second Edition, January.
68. Lira-Saade, R. (1995), “Cucurbita L., Estudios Taxonómicos y Ecogeográphicos de las Cucurbitaceae Latinoamericanas de Importancia Económica”, Systematics and Ecogeographic Studies on Crop Genepools, Vol. 9, Rome: IPGRI.
69. Lúcia Helena Pinheiro Martins, Hiroshi Noda, Maria Teresa Gomes Lopes (2016), "Genetic Variability of Pumpkin Landraces in Brazilian Amazon", Agricultural Sciences, 7, pp 822 - 833.
70. Marilene Hilma dos Santos, Rosana Rodrigues, Leandro Simões Azeredo Gonçalves, Sudré and Messias Gonzaga Pereira (2012). “Agrobiodiversity in Cucurbita spp. landraces collected in Rio de Janeiro assessed by molecular markers”, Crop Breeding and Applied Biotechnology 12, pp 96 - 103.
71. Mark Gaskell (1996). Pumpkin production in Califonia, University of Califonia.
72. Merrick, L. C., (1995), “Squashes, pumpkins, and gourds”, In Evolution of Crop Plants, Smartt, J. and Simmonds, N.W., Eds., 2nd ed.,
London: Longman Scientific and Technical, pp 97 - 105.
73. Mohammadi, S.A., Prasanna, B.M. (2003), “Analysis of genetic diversity in crop plant- Salient statistical tool and considerations”, Crop Sci, 43, pp 1235 - 1248.
74. Mohsin G.M., M. S. Islam, M. S. Rahman, M. Hasanuzzaman (2018), "Genetic variability, correlation and path coefficients of yield and its components analysis in pumpkin (Cucurbita moschata Duch Ex Poir)", Int. J. Agril. Res. Innov. & Tech. 7 (1), pp 8 - 13.
75. Moya-Hernández A, Bosquez-Molina E, Serrato-Díaz A, Blancas- Flores G (2018), Analysis of genetic diversity of Cucurbita ficifolia Bouché from different regions of Mexico, using AFLP markers and study of its hypoglycemic effect in mice, South African Journal of Botany, 116, pp 110-115.
76. Muenmanee, N., Joomwong, A., Natwichai, J., Boonyakiat, D. (2016), Changes in physio-chemical properties during fruit development of Japanese pumpin (Cucurbita maxima). International Food Research Journal, 23(5), pp 2063 - 2070.
77. Muralidhara M.S., N.C. Narasegowda (2014), “Genetic diversity analysis of pumpkim genotypes (Cucurbita moschata Duch ex. Poir) using morphological and RAPD markers”, Asian Journal of Bio Science, Vol. 9, pp 188 - 194.
78. Muralidhara M. S. and N. C. Narasegowda (2016), Genetic diversity analysis of pumpkin genotype using morphological and RAPD markers, Asian Journal of BioSience, Vol. 9 (2), pp 188 - 194.
79. Murovec, J. (2015), "Phenotypic and genetic diversity in pumpkin accessions with mutated seed coats", Hortscience A Pub. Ame. Soc. Hort. Sci., 50 (2), pp 211 - 217.
80. Mutschler, M.A. and O.H. Pearson, (1987), “The origin, inheritance,
and instability of butternut squash (Cucurbita moschata Duchesne)”,
HortScience, 22, pp 535 - 539.
81. Nei M (1972), “Analysis of gene diversity in subdivided populations”,
Genet. 70, pp 3321 - 3323.
82. Nguyen Thi Lang, Tran Thi Thanh Xa, Ho Phu Yen, Tran Khac Thi (2007), Genetic divergence analysis on Cucumis spp. by RAPD marker. Omonrice 15.
83. Njung’e Vincent Michael, Pamela Moon, Yuqing Fu, and Geoffrey Meru (2019), Genetic Diversity Among Accessions of Cucurbita pepo Resistant to Phytophthora Crown Rot. Hortscience 54(1), pp 17 - 22. Https://doi.org/10.21273/HORTSCI13506-18.
84. Nontuthuko R. Ntuli, Pangirayi B. Tongoonab, Alpheus M. Zoboloa (2015), Genetic diversity in Cucurbita pepo landraces revealed by RAPD and SSR markers, Scientia Horticulturae, 189, pp 19 - 200.
85. Olszanska, A.N., Biesiada, A., Letowska, A.S., Kucharska, A.Z. (2014), Characteristics of organic acids in the fruit of different pumpkin species. Food Chemistry, 148, pp 415 - 419.
86. Paris H. S. (1989), “Historical records, origins and development of the edible cultivar groups of Cucurbita pepo (Cucurbitacea)”, The Journal of Economic Botany, 43, pp 423 - 443.
87. Paris H. S. (2001), “Historical of the cultivar-groups of Cucurbita pepo (Cucurbitacea)”, Hort, Rev., 25, pp 71 - 170.
88. Paris H. S., Yonash, N., Portnoy, V., Mozes-Daube, N., Tuzuri, G., and Katzir, N. (2003), “Assessment of genetic relationships in Cucurbita pepo (Cucurbitaeae) using DNA markers”, Theor, Appl, Genet., 106, pp 971 - 978.
89. Paris H.S., A. Doron-Faigenboim, U.K. Reddy, R. Donahoo and A. Levi (2015), "Genetic relationships in Cucurbita pepo (pumpkin, squash,