MỘT SỐ ĐỊNH LÝ THÁC TRIỂN HỘI TỤ TRONG LÝ THUYẾT HÀM HÌNH HỌC - 7


TÀI LIỆU THAM KHẢO


[1] Phạm Việt Đức (2005), Mở đầu về lý thuyết các không gian phức hyperbolic, Nhà xuất bản Đại Học Sư Phạm, Hà Nội.

[2] T. J. Barth (1970), Taut and tight complex manifolds, Proc. Amer. Math. Soc., 24, pp. 429-431.

[3] R. Brody (1978), Compact manifolds and hyperbolicity, Trans. Amer. Math. J., 235, pp. 213-219.

[4] J. E. Joseph and M. H. Kwack (1994), Hyperbolic imbedding and spaces of continuous extensions of holomorphic maps, The journal of Geometric Analysis, 4, pp. 361-378.

[5] J. E. Joseph and M. H. Kwack (1997), Extension and convergence theorems for families of normal maps in several variables, Proc. Amer. Math. Soc., 125, pp. 1675-1684.

[6] P. Kiernan (1972), Extensions of holomorphic maps, Trans. Amer. Math. Soc., 172, pp. 347-355.

[7] S. Kobayashi (1998), Hyperbolic Complex Spaces, Grundlehren der mathematischen Wissenschaften, 318.

Có thể bạn quan tâm!

Xem toàn bộ 58 trang tài liệu này.

[8] A. Kodama (1979), On bimeromorphic automorphisms of hyperbolic complex spaces, Nagoya Math. J., pp. 1-5.

[9] J. Noguchi (1985), Moduli spaces of holomorphic mappings into hyperbolically imbedded complex spaces and locally symmetric spaces, Invent. Math., 93, pp. 15-34.

MỘT SỐ ĐỊNH LÝ THÁC TRIỂN HỘI TỤ TRONG LÝ THUYẾT HÀM HÌNH HỌC - 7

[10] J. Noguchi and T. Ochiai (1990), Geometric Function Theory in Several Complex Variables, Translation of Math. Monographs, Amer. Math. Soc., 80.

[11] B. Shabat (1979), Introduction to Complex Analysis, Part I: Functions of Several Variables, Transl. Math. Monogr. Amer. Math. Soc., Providence.


[12] B. Shabat (1992), Introduction to Complex Analysis, Part II: Functions of Several Variables, Transl. Math. Monogr. Amer. Math. Soc., Providence.

[13] D. D. Thai (1991), On the D*-extension and the Hartogs extension, Ann. della Scuo. Nor. Super. di Pisa, Sci. Fisi. e Mate., Ser. 4, 18, pp. 13-38.

[14] D. D. Thai and P. N. Mai (2003), Convergence and extension theorems in geometric function theory, Kodai Math. J., 26, pp. 179-198.

[15] T. Urata (1982), The hyperbolicity of complex analytic spaces, Bull. Aichi Univ. Educ. 31 (Natural Sci.), pp. 65-75.

[16] S. Venturini (1996), The Kobayashi metric on complex spaces, Math. Ann., 305, pp. 25-44.

[17] M. G. Zaidenberg (1983), Picard’s theorem and hyperbolicity, Siberian Math. J., pp. 858-867.

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 27/04/2022