astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid, Transgenic Research, 2016, 25 (4), 477-489.
32. C. Li, J. Ji, G. Wang, Z. Li, Y. Wang, Y. Fan, Over-Expression of LcPDS, LcZDS, and LcCRTISO, Genes From Wolfberry for Carotenoid Biosynthesis, Enhanced Carotenoid Accumulation, and Salt Tolerance in Tobacco, Frontiers in plant science, 2020, 11, 119.
33. R.P. McQuinn, B. Wong, J.J. Giovannoni, AtPDS overexpression in tomato: exposing unique patterns of carotenoid self‐regulation and an alternative strategy for the enhancement of fruit carotenoid content, Plant biotechnology journal, 2018, 16 (2), 482-494.
34. Z. Zhao, Z. Liu, X. Mao, Biotechnological Advances in Lycopene β-Cyclases, Journal of Agricultural and Food Chemistry, 2020, 68 (43), 11895-11907.
35. A. Hannoufa, Z. Hossain, Regulation of carotenoid accumulation in plants, Biocatalysis and Agricultural Biotechnology, 2012, 1 (3), 198-202.
36. M. Hayashi, T. Ishibashi, D. Kuwahara, K. Hirasawa, Commercial Production of Astaxanthin with Paracoccus carotinifaciens, Carotenoids: Biosynthetic and Biofunctional Approaches, 2021, 1261, 11-20.
37. K. Bernhard, Synthetic astaxanthin. The route of a carotenoid from research to commercialisation. Carotenoids, Springer, 1989, 337-363.
38. M. Rodríguez-Sáiz, J.L. de la Fuente, J.L. Barredo, Xanthophyllomyces dendrorhous for the industrial production of astaxanthin, Applied microbiology and biotechnology, 2010, 88 (3), 645-658.
39. A. Mortensen, L.H. Skibsted, Importance of carotenoid structure in radical- scavenging reactions, Journal of Agricultural and Food Chemistry, 1997, 45 (8), 2970-2977.
Có thể bạn quan tâm!
- Chuyển Gen Bằng Vi Khuẩn A. Tumefaciens Sử Dụng Dao Mổ Kết Hợp Sóng Siêu Âm, Thấm Chân Không Tạo Vết Thương Mẫu
- Dòng Chuyển Gen D2 (A) Và D8 (B) Phát Triển Ngoài Vườn Ươm
- So Sánh Kiểu Hình Cây Chuyển Gen Và Cây Đối Chứng.
- Y. Hiei, S. Ohta, T. Komari, T. Kumashiro, Efficient Transformation Of Rice (Oryza Sativa L.) Mediated By Agrobacterium And Sequence Analysis Of The Boundaries Of The T‐Dna, The Plant Journal,
- Kết Quả Ảnh Hưởng Của Iba Đến Khả Năng Tạo Rễ Của Chồi Đậu Tương In Vitro (Tỉ Lệ Mẫu Tạo Rễ Đã Được Chuyển Đổi Sang Dạng Arcsin√X;
- Nghiên cứu tạo cây đậu tương Glycine max L. biến đổi gen có khả năng tổng hợp astaxanthin chuyên biệt ở hạt - 20
Xem toàn bộ 176 trang tài liệu này.
40. R. Ambati, S.-M. Phang, S. Ravi, R. Aswathanarayana, Astaxanthin: sources, extraction, stability, biological activities and its commercial applications-a review, Marine drugs, 2014, 12 (1), 128-152.
41. L. Ekpe, K. Inaku, V. Ekpe, Antioxidant effects of astaxanthin in various diseases??? a review, Journal of Molecular Pathophysiology, 2018, 7 (1), 1-6.
42. J. Dose, S. Matsugo, H. Yokokawa, Y. Koshida, S. Okazaki, U. Seidel, M. Eggersdorfer, G. Rimbach, T. Esatbeyoglu, Free radical scavenging and cellular antioxidant properties of astaxanthin, International journal of molecular sciences, 2016, 17 (1), 103.
43. B. Capelli, S. Talbott, L. Ding, F. Capelli, Efficacy of astaxanthin from different sources: Reports on the suitability for human health and nutrition, Global Perspectives on Astaxanthin, 2021, 391-409.
44. G. Hussein, U. Sankawa, H. Goto, K. Matsumoto, H. Watanabe, Astaxanthin, a carotenoid with potential in human health and nutrition, Journal of natural products, 2006, 69 (3), 443-449.
45. F.J. Pashkow, D.G. Watumull, C.L. Campbell, Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease, The American journal of cardiology, 2008, 101 (10), 58-68.
46. K.C. Lim, F.M. Yusoff, M. Shariff, M.S. Kamarudin, Astaxanthin as feed supplement in aquatic animals, Reviews in Aquaculture, 2018, 10 (3), 738- 773.
47. M. Ahuja, J. Varavadekar, M. Vora, P. Sethia, H. Reddy, V. Rangaswamy, Astaxanthin: Current Advances in Metabolic Engineering of the Carotenoid, High Value Fermentation Products: Human Health, 2019, 1, 381-399.
48. C.V.G. Prieto, F.D. Ramos, V. Estrada, M.A. Villar, M.S. Diaz, Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB, Energy, 2017, 139, 1159-1172.
49. B. Stachowiak, P. Szulc, Astaxanthin for the Food Industry, Molecules, 2021, 26 (9), 2666.
50. S. Jannel, Y. Caro, M. Bermudes, T. Petit, Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient, Journal of Marine Science and Engineering, 2020, 8 (10), 789.
51. T. Goodwin, The biochemistry of the carotenoids. II. Animals, Chapmann and Hall, (1984), London.
119
52. T. Matsuno, Aquatic animal carotenoids, Fisheries science, 2001, 67 (5), 771- 783.
53. S. Boussiba, Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response, Physiologia Plantarum, 2000, 108 (2), 111-117.
54. T. Goodwin, Biosynthesis of carotenoids, Springer, (1980), Netherlands.
55. J. Kim, J.J. Smith, L. Tian, D. DellaPenna, The evolution and function of carotenoid hydroxylases in Arabidopsis, Plant and cell physiology, 2009, 50 (3), 463-479.
56. D. Han, Y. Li, Q. Hu, Astaxanthin in microalgae: pathways, functions and biotechnological implications, Algae, 2013, 28 (2), 131.
57. L. Fan, A. Vonshak, R. Gabbay, J. Hirshberg, Z. Cohen, S. Boussiba, The biosynthetic pathway of astaxanthin in a green alga Haematococcus pluvialis as indicated by inhibition with diphenylamine, Plant and cell physiology, 1995, 36 (8), 1519-1524.
58. G. Sandmann, Genetic manipulation of carotenoid biosynthesis: strategies, problems and achievements, Trends in plant science, 2001, 6 (1), 14-17.
59. V. Mann, M. Harker, I. Pecker, J. Hirschberg, Metabolic engineering of astaxanthin production in tobacco flowers, Nature Biotechnology, 2000, 18 (8), 888.
60. T. Hasunuma, S.I. Miyazawa, S. Yoshimura, Y. Shinzaki, K.I. Tomizawa, K. Shindo, S.K. Choi, N. Misawa, C. Miyake, Biosynthesis of astaxanthin in tobacco leaves by transplastomic engineering, The Plant Journal, 2008, 55 (5), 857-868.
61. H. Harada, T. Maoka, A. Osawa, J.-i. Hattan, H. Kanamoto, K. Shindo, T. Otomatsu, N. Misawa, Construction of transplastomic lettuce (Lactuca sativa) dominantly producing astaxanthin fatty acid esters and detailed chemical analysis of generated carotenoids, Transgenic Research, 2014, 23 (2), 303- 315.
120
62. D. Jia, L. Fan, J. Shen, S. Qin, F. Li, Y. Yuan, Genetic transformation of the astaxanthin biosynthetic genes bkt and crtR-B into apple tree to increase photooxidation resistance, Scientia Horticulturae, 2019, 243, 428-433.
63. E.C. Pierce, P.R. LaFayette, M.A. Ortega, B.L. Joyce, D.A. Kopsell, W.A. Parrott, Ketocarotenoid production in soybean seeds through metabolic engineering, PLoS One, 2015, 10 (9), e0138196.
64. G. Keshavareddy, A. Kumar, V.S. Ramu, Methods of Plant Transformation-A Review, Int. J. Curr. Microbiol. App. Sci, 2018, 7 (7), 2656-2668.
65. N.K. Dhal, M.B.R. Sahu, M.A. Sushree, A Review on Plant Transformation Methods, International Journal of Modern Agriculture, 2020, 9 (3), 757-763.
66. J.C. Sanford, T.M. Klein, E.D. Wolf, N. Allen, Delivery of substances into cells and tissues using a particle bombardment process, Particulate Science and Technology, 1987, 5 (1), 27-37.
67. G. Atiq, N. Nasrullah Khan, M.A.R. Raheem, R.K. Iqbal, Plant Transformation in Biotechnology, Middle East Journal of Applied Science & Technology (MEJAST), 2019, 2 (3), 103-123.
68. A. Harkess (2019). Smashing Barriers in Biolistic Plant Transformation, American Society of Plant Biologists.
69. G.A. De La Riva, J. González-Cabrera, R. Vázquez-Padrón, C. Ayra-Pardo, Agrobacterium tumefaciens: a natural tool for plant transformation, Electronic journal of Biotechnology, 1998, 1 (3), 24-25.
70. A. Ziemienowicz, Agrobacterium-mediated plant transformation: factors, applications and recent advances, Biocatalysis and Agricultural Biotechnology, 2014, 3 (4), 95-102.
71. A. Graves, S. Goldman, S. Banks, A. Graves, Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum, Journal of bacteriology, 1988, 170 (5), 2395-2400.
72. H. Mafakheri, S.M. Taghavi, Z. Banihashemi, E. Osdaghi, J.R. Lamichhane, Pathogenicity, host range and phylogenetic position of Agrobacterium species associated with sugar beet crown gall outbreaks in Southern Iran, European Journal of Plant Pathology, 2017, 147 (3), 721-730.
121
73. S.B. Gelvin, Agrobacterium-mediated plant transformation: the biology behind the ―gene-jockeying‖ tool, Microbiol. Mol. Biol. Rev., 2003, 67 (1), 16-37.
74. T. Tzfira, V. Citovsky, Agrobacterium: from biology to biotechnology, Springer Science & Business Media, (2007).
75. N. Halford, Plant biotechnology: Current and future applications of genetically modified crops, John Wiley & Sons, (2006).
76. P.L. Metz, W.J. Stiekema, J.-P. Nap, A transgene-centered approach to the biosafety of transgenic phosphinothricin-tolerant plants, Molecular Breeding, 1998, 4 (4), 335-341.
77. E. Mahran, M. Keusgen, G.E. Morlock, New planar assay for streamlined detection and quantification of β-glucuronidase inhibitors applied to botanical extracts, Analytica chimica acta: X, 2020, 4, 100039.
78. L. Valentine, Agrobacterium tumefaciens and the plant: the David and Goliath of modern genetics, Plant physiology, 2003, 133 (3), 948-955.
79. C.M. Hernandez-Garcia, J.J. Finer, Identification and validation of promoters and cis-acting regulatory elements, Plant Science, 2014, 217, 109-119.
80. B. Pandey, P. Prakash, P.C. Verma, R. Srivastava, Regulated gene expression by synthetic modulation of the promoter architecture in plants. Current Developments in Biotechnology and Bioengineering, Elsevier, 2019, 235-255.
81. S.H. Ding, L.Y. Huang, Y.D. Wang, H.C. Sun, Z.H. Xiang, High-level expression of basic fibroblast growth factor in transgenic soybean seeds and characterization of its biological activity, Biotechnology letters, 2006, 28 (12), 869-875.
82. A. Iida, A. Nagasawa, K. Oeda, Positive and negative cis-regulatory regions in the soybean glycinin promoter identified by quantitative transient gene expression, Plant Cell Reports, 1995, 14 (9), 539-544.
83. T. Moravec, M.A. Schmidt, E.M. Herman, T. Woodford-Thomas, Production of Escherichia coli heat labile toxin (LT) B subunit in soybean seed and analysis of its immunogenicity as an oral vaccine, Vaccine, 2007, 25 (9), 1647-1657.
84. Z. Yin, W. Plader, S. Malepszy, Transgene inheritance in plants, Journal of Applied Genetics, 2004, 45 (2), 127-144.
85. K. Tizaoui, M.E. Kchouk, Genetic approaches for studying transgene inheritance and genetic recombination in three successive generations of transformed tobacco, Genetics and molecular biology, 2012, 35 (3), 640-649.
86. Y. Ren, J. Zhang, H. Liang, J. Wang, M. Yang, Inheritance and expression stability of exogenous genes in insect-resistant transgenic poplar, Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 130 (3), 567-576.
87. Z. Yong, Y. Bao-Yu, C. Shi-Yun, Inheritance analysis of herbicide-resistant transgenic soybean lines, Acta Genetica Sinica, 2006, 33 (12), 1105-1111.
88. A. Limanton-Grevet, M. Jullien, Agrobacterium-mediated transformation of Asparagus officinalis L.: molecular and genetic analysis of transgenic plants, Molecular Breeding, 2001, 7 (2), 141-150.
89. M. Matzke, E. Moscone, Y.-D. Park, I. Papp, H. Oberkofler, F. Neuhuber, A. Matzke, Inheritance and expression of a transgene insert in an aneuploid tobacco line, Molecular and General Genetics MGG, 1994, 245 (4), 471-485.
90. M. Cannell, A. Doherty, P. Lazzeri, P. Barcelo, A population of wheat and tritordeum transformants showing a high degree of marker gene stability and heritability, Theoretical and Applied Genetics, 1999, 99 (5), 772-784.
91. A. Scott, D. Woodfield, D.W. White, Allelic composition and genetic background effects on transgene expression and inheritance in white clover, Molecular Breeding, 1998, 4 (6), 479-490.
92. T. Yamada, K. Takagi, M. Ishimoto, Recent advances in soybean transformation and their application to molecular breeding and genomic analysis, Breed Sci, 2012, 61 (5), 480-494.
93. B. Valliyodan, D. Qiu, G. Patil, P. Zeng, J. Huang, L. Dai, C. Chen, Y. Li, T. Joshi, L. Song, Landscape of genomic diversity and trait discovery in soybean, Scientific reports, 2016, 6 (1), 1-10.
94. A.J. Cattelan, A. Dall'Agnol, The rapid soybean growth in Brazil, Embrapa Soja-Artigo em periódico indexado (ALICE), 2018,
95. M.C. Pagano, M. Miransari, The importance of soybean production worldwide. Abiotic and biotic stresses in soybean production, Elsevier, 2016, 1-26.
96. Phạm Văn Thiều, Cây đậu tương, NXB Nông Nghiệp, Hà Nội, 2002,
97. G.L. Hartman, E.D. West, T.K. Herman, Crops that feed the World 2. Soybean—worldwide production, use, and constraints caused by pathogens and pests, Food Security, 2011, 3 (1), 5-17.
98. S. Liu, M. Zhang, F. Feng, Z. Tian, Toward a ―green revolution‖ for soybean, Molecular plant, 2020, 13 (5), 688-697.
99. T.Y. Cheng, H. Saka, Vo Qui Dinh, Plant regeneration from soybean cotyledonary node segments in culture, Plant Science Letters, 1980, 19 (2), 91- 99.
100. G. Franklin, L. Carpenter, E. Davis, C.S. Reddy, D. Al-Abed, W. Abou Alaiwi,
M. Parani, B. Smith, R.V. Sairam, Factors influencing regeneration of soybean from mature and immature cotyledons, Plant growth regulation, 2004, 43 (1), 73-79.
101. C. Janani, B.R. Kumari, In vitro plant regeneration from cotyledonary node and half seed explants of Glycine max L.(JS335), Ann. Biol. Res, 2013, 4 (11), 60-66.
102. X.H. Ma, T.L. Wu, Rapid and efficient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants, Acta Physiologiae Plantarum, 2008, 30 (2), 209-216.
103. M. Zia, Z. Rizvi, R. Rehman, M. Chaudhary, Micropropagation of two Pakistani soybean (Glycine max L.) cultivars from cotyledon nodes, Spanish Journal of Agricultural Research, 2010, 8 (2), 448-453.
104. N. Soto, A. Ferreira, C. Delgado, G.A. Enríquez, In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety, Biotecnología Aplicada, 2013, 30 (1), 34-38.
105. P. Mangena, W.M. Phatlane, R.V. Nikolova, In vitro multiple shoot induction in soybean, International Journal of Agriculture and Biology, 2015, 17 (4)
106. G. Raza, M.B. Singh, P.L. Bhalla, In Vitro Plant Regeneration from Commercial Cultivars of Soybean, Biomed Res Int, 2017, 2017, 7379693.
107. Nguyễn Thị Thu Hường, Trần Thị Ngọc Diệp, Nguyễn Thu Hiền, Chu Hoàng Mậu, Lê Văn Sơn, Chu Hoàng Hà, Phát triển hệ thống tái sinh in vitro ở cây
124
đậu tương ( lycine max (L ) Merill) phục vụ chuyển gen, Tạp chí Khoa học và Công nghệ, 2009, 52 (4), 89-93.
108. Nguyễn Tiến Dũng, Ngô Xuân Bình, Nghiên cứu khả năng tiếp nhận gen của một số giống đậu tương [ lycine max (L ) Merr ] của Việt Nam thông qua vi khuẩn Agrobacterium tumefaciens, Kỷ yếu HNKH trẻ toàn quốc, 2011, 338- 343.
109. Phan Lê Tư, Tôn Bảo Linh, Nguyễn Vũ Phong, Đánh giá khả năng tái sinh và chuyển gene nhờ vi khuẩn Agrobacterium tumefaciens ở một số giống đậu nành, Tạp chí KHKT Nông Lâm nghiệp, 2018, (1), 8-16.
110. P. Olhoft, D. Somers, L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells, Plant Cell Reports, 2001, 20 (8), 706-711.
111. M.M. Paz, J.C. Martinez, A.B. Kalvig, T.M. Fonger, K. Wang, Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation, Plant Cell Rep, 2006, 25 (3), 206-213.
112. Z. Zhang, A. Xing, P. Staswick, T.E. Clemente, The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean, Plant Cell, Tissue and Organ Culture, 1999, 56 (1), 37-46.
113. C.-Y. Lu, The use of thidiazuron in tissue culture, In Vitro Cellular & Developmental Biology-Plant, 1993, 29 (2), 92-96.
114. Y.H. Dewir, Y. Naidoo, J.A.T. da Silva, Thidiazuron-induced abnormalities in plant tissue cultures, Plant Cell Reports, 2018, 37 (11), 1451-1470.
115. M. Christianson, D. Warnick, P. Carlson, A morphogenetically competent soybean suspension culture, Science, 1983, 222 (4624), 632-634.
116. P.A. Lazzeri, D.F. Hildebrand, G.B. Collins, A procedure for plant regeneration from immature cotyledon tissue of soybean, Plant Molecular Biology Reporter, 1985, 3 (4), 160-168.
117. M. Bailey, H. Boerma, W. Parrott, Genotype effects on proliferative embryogenesis and plant regeneration of soybean, In Vitro Cellular & Developmental Biology-Plant, 1993, 29 (3), 102-108.