Các Bước Phát Triển Mô Hình Quyết Định Bước 1. Cụ Thể Hóa Vấn Đề Ra Quyết Định

Các phương pháp hiệu chỉnh chi phí

Do các nghiên cứu ước tính chi phí có thể thực hiện ở các thời điểm khác nhau hoặc ở các nước khác nhau dẫn đến sự khác biệt về thời gian và đơn vị tiền tệ, hiệu chỉnh dữ liệu về chi phí cần được thực hiện. Có 2 cách hiệu chỉnh thường được sử dụng là lạm phát và chiết khấu. Lạm phát dùng để hiệu chỉnh chi phí từ quá khứ về hiện tại, còn chiết khấu dùng để hiệu chỉnh chi phí từ tương lai về hiện tại.

1.3.2.2. Hiệu quả

Hiệu quả trong phân tích kinh tế dược là những tác động, các kết quả đầu ra của một chương trình y tế hoặc của một thuốc. Trong các đầu ra của một phân tích kinh tế dược, chỉ số QALY thường được sử dụng vì đây là một thước đo về tác động của các can thiệp y tế thể hiện cả hai mặt của kết quả y tế gồm: mức độ cải thiện sức khỏe và thời gian cải thiện sức khỏe. Mức độ cải thiện sức khỏe hay chỉ số HRQoL được đo dựa trên thang đo tình trạng sức khỏe của bệnh nhân từ 0 đến 1, trong đó 0 là tình trạng sức khỏe xấu nhất (tử vong) và 1 là tình trạng sức khỏe tốt nhất có thể [108].

Các phương pháp đánh giá chất lượng cuộc sống (CLCS)

Phương pháp ước tính hiệu quả trực tiếp

Phương pháp ước tính trực tiếp yêu cầu người trả lời câu hỏi đánh giá một tình huống giả định dựa trên tình trạng của bệnh nhân nhằm xác định ngưỡng chấp nhận của người đó [46], [76]. Các phương pháp ước tính trực tiếp thường tốn nhiều thời gian khi thực hiện và đòi hỏi người phỏng vấn phải được đào tạo để có thể giải thích rõ ràng các câu hỏi mà không dẫn dắt câu trả lời hoặc gây khó hiểu cho bệnh nhân, do đó phương pháp này ít được sử dụng [46].

Phương pháp ước tính hiệu quả gián tiếp

Phương pháp ước tính hiệu quả gián tiếp yêu cầu bệnh nhân trả lời các câu hỏi trong bộ câu hỏi nghiên cứu đã được xây dựng. Hiện nay, có 02 loại bộ câu hỏi tùy thuộc vào mục đích nghiên cứu: Bộ công cụ đánh giá chuyên biệt và bộ công cụ đánh giá chung. Bộ công cụ chuyên biệt dùng để đánh giá CLCS bệnh nhân mắc một bệnh cụ thể chẳng hạn như: bộ công cụ KDQOL sử dụng cho bệnh nhân bệnh

thận, QoL–AD cho bệnh nhân Alzheimer, hoặc EORTC QLQ – C30 cho bệnh nhân ung thư. Bộ công cụ đánh giá chung có thể được áp dụng trong đánh giá CLCS nhiều loại bệnh, một số bộ công cụ có thể kể đến gồm: SF-36, EQ5D, WHOQOL.

Nhìn chung các bộ công cụ đo lường CLCS chung và bộ công cụ chuyên biệt đều cho cái nhìn tổng quát về CLCS của bệnh nhân. Mỗi bộ công cụ có ưu nhược điểm khác nhau, do đó không thể đưa ra kết luận bộ công cụ nào cho kết quả tốt hơn mà tùy vào mục đích, đối tượng hoặc điều kiện tiến hành nghiên cứu mà lựa chọn bộ công cụ phù hợp hoặc kết hợp hai hay nhiều bộ công cụ cùng một lúc.

1.3.3. Mô hình hóa trong kinh tế dược


1.3.3.1. Khái niệm

Mô hình là công cụ giúp đơn giản hóa thế giới thực nhằm đánh giá chi phí và hiệu quả kỳ vọng của các liệu pháp điều trị, cho phép phát triển các ước tính và phân tích linh hoạt, thử nghiệm nhiều giả định và những bối cảnh khác nhau. Mô hình không những giúp cho nhà nghiên cứu trả lời các câu hỏi để đưa ra các quyết định thực hiện một can thiệp y tế mà còn cung cấp nhiều thông tin quan trọng khi thay đổi các giả định hoặc bối cảnh nghiên cứu [47], [59].

Hiện nay, phương pháp mô hình hóa được sử dụng phổ biến trong những đánh giá kinh tế dược, nhất là những nghiên cứu có dữ liệu đầu vào được lấy từ các thử nghiệm lâm sàng ngẫu nhiên có đối chứng (Randomized Controlled Trial – RCT), mà những can thiệp trong nghiên cứu có ảnh hưởng tới tuổi thọ và/hoặc chất lượng cuộc sống của người bệnh. Điều này được giải thích là do những hạn chế khi sử dụng nghiên cứu RCT như sau: (1) Thường chỉ so sánh 2 hoặc 3 lựa chọn điều trị và có thể không bao gồm chuỗi so sánh liên quan mà 1 nghiên cứu kinh tế dược quan tâm; (2) Khó có thể cung cấp đủ thông tin các nguồn lực cần thiết; (3) Có những giới hạn về mặt thời gian nghiên cứu, nhất là trong trường hợp bệnh mãn tính; (4) Không cung cấp thông tin so sánh về điểm kết thúc cuối cùng mà thường dừng ở điểm trung gian và (5) Có xu hướng thực hiện trên một nhóm đối tượng cụ thể và bỏ qua nhóm bệnh nhân khác và do đó cần có một công cụ làm khuôn mẫu để có thể khái quát các nhóm nhỏ bệnh nhân này.

1.3.3.2. Phân loại

Các mô hình mô phỏng thường được sử dụng trong các đánh giá y tế bao gồm mô hình cây quyết định, mô hình Markov, mô hình mô phỏng sự kiện riêng biệt, mô hình hệ thống động học và mô hình tác nhân cơ sở. Trong đó, mô hình Markov và mô hình cây quyết định được sử dụng nhiều nhất và gần như giải quyết được mọi vấn đề đặt ra trong đánh giá kinh tế dược. Đối với bệnh mãn tính, mô hình Markov được sử dụng phổ biến.

1.3.3.2.1. Mô hình Markov

Mô hình Markov là mô hình mô tả chuỗi các sự kiện lặp đi lặp lại và chuyển hóa qua lại lẫn nhau với những tần số chuyển hóa và chu kì chuyển hóa nhất định (Hình 1.7). Mô hình Markov được sử dụng dựa trên quan điểm bệnh là một chuỗi những trạng thái nhất định, do đó đặc biệt hữu ích trong phân tích kinh tế dược, đặc biệt đối với các bệnh lý mãn tính với yếu tố thời gian đóng vai trò quan trọng quyết định hiệu quả điều trị. Để xây dựng mô hình Markov cần có những dữ liệu về trạng thái bệnh, tần suất chuyển giữa các trạng thái bệnh, chu kì Markov và thời gian chạy mô hình. Mô hình Markov có ưu điểm là có xét đến yếu tố thời gian nhưng khuyết điểm là không có bộ nhớ và tần số chuyển không phụ thuộc vào trạng thái trước đó [47]. Mô hình Markov đơn giản với 3 trạng thái bệnh được trình bày trong Hình 1.7.

Khỏe

Tiến triển

Tử vong

Hình 1.7. Mô hình Markov

1.3.3.2.2. Xác định tần số chuyển giữa các trạng thái bệnh trong mô hình Markov

Ma trận chuyển đổi (transition matrix)

Xác suất xác định cách mà bệnh nhân di chuyển từ trạng thái này sang trạng thái khác như thế nào. Tổng các xác suất chuyển đổi xuất phát từ một trạng thái bệnh phải bằng 1. Giả định nghiên cứu sử dụng mô hình Markov cơ bản bao gồm 3

trạng thái bệnh (khỏe mạnh, tiến triển, tử vong) (Hình 1.7), việc biểu diễn xác suất các trạng thái bệnh có thể được biểu diễn dưới dạng ma trận chuyển đổi và được trình bày trong Bảng 1.4.

Bảng 1. 4. Xác suất chuyển đổi trạng thái bệnh


Đến chu kỳ t+1


Khỏe mạnh

Tiến triển

Tử vong

Tổng

Từ chu kỳ t

Khỏe mạnh

1-(a+b)

a

b

1


Tiến triển

0

1-c

c

1


Tử vong

0

0

1

1

Có thể bạn quan tâm!

Xem toàn bộ 171 trang tài liệu này.

Nghiên cứu chi phí - hiệu quả của nilotinib so với imatinib trong điều trị bạch cầu mạn dòng tủy tại Việt Nam - 5

Theo quy ước, các hàng đại diện cho trạng thái bệnh ở đầu chu kỳ (chu kỳ t), các cột đại diện cho các trạng thái bệnh mà cá nhân sẽ di chuyển đến ở chu kỳ tiếp theo (chu kỳ t+1). Mỗi ô trong ma trận mô tả xác suất di chuyển từ hàng đến cột, nếu một số chuyển đổi trạng thái bệnh không xảy ra sẽ đặt bằng 0. Ngoài ra, vì tổng xác suất các hàng phải bằng 1, nếu chúng ta chỉ biết xác suất chuyển đổi ở một số ô, chúng ta có thể ngoại suy xác suất của ô còn lại bằng cách lấy số dư chẳng hạn như xác suất từ trạng thái "khỏe mạnh" quay lại trạng thái "khỏe mạnh" là 1-(a+b).

Đối với trạng thái bệnh "tử vong". Nếu bắt buộc yêu cầu có dữ liệu tử vong, hoặc là do một bệnh cụ thể, hoặc là từ tất cả nguyên nhân, có thể sử dụng bảng sống (life table) của quốc gia để ước tính xác suất chuyển đổi.

Tỷ lệ và xác suất

Xác suất chuyển đổi có thể được xác định từ nhiều nguồn dữ liệu khác nhau, trong đó lý tưởng nhất là tổng hợp dữ liệu từ các nghiên cứu. Tuy nhiên, cần lưu ý rằng, có sự khác biệt giữa xác suất (probability) và tỷ lệ (rate) và trong nhiều nghiên cứu, các nhà nghiên cứu sẽ sử dụng tỷ lệ thay vì sử dụng xác suất. Do đó, việc chuyển đổi là cần thiết. Công thức chuyển đổi từ tỷ lệ qua xác suất [58]:

p = 1 – e-rt

Trong đó, p: xác suất; r: tỷ lệ; t là khoảng thời gian xảy ra sự kiện

Xác suất chuyển đổi theo thời gian

Đa số trong các mô hình Markov, để đơn giản hóa, xác suất chuyển đổi trạng thái thường được giả định không biến đổi theo thời gian bất kể bệnh nhân ở trạng

thái đó trong bao lâu. Chẳng hạn như bệnh nhân nhiễm HIV có xác suất tử vong hàng năm khi ở trạng thái AIDS là như nhau bất kể bệnh nhân đã ở trạng thái AIDS trong bao lâu nhưng trong thực tế, xác suất tử vong của bệnh nhân có thể tăng theo thời gian. Trong các trường hợp này, xác suất chuyển đổi phụ thuộc thời gian (time- dependent transition probabilities) có thể được sử dụng thay thế [58].

Có 02 loại xác suất chuyển đổi phụ thuộc thời gian: xác suất chuyển đổi biến đổi theo thời gian trong mô hình và biến đổi theo thời gian trong trạng thái bệnh.

+ Xác suất chuyển đổi biến đổi theo thời gian trong mô hình là trường hợp xác suất biến đổi sau mỗi chu kỳ của mô hình hoặc nói cách khác là xác suất biến đổi theo tuổi người bệnh. Xác suất này thường được áp dụng trong việc xác định xác suất tử vong không do bệnh mà do các nguyên nhân khác gây ra (xác suất tử vong tự nhiên) và thường được rút ra từ bảng sống còn (life table) của từng quốc gia, với tuổi càng tăng thì xác suất tử vong càng tăng. Xác suất này tương đối dễ thực hiện nếu giả định rằng tất cả các bệnh nhân trong mô hình bắt đầu ở cùng độ tuổi. Do đó, tuổi bắt đầu vào mô hình cần phải được nêu rõ, vì đây sẽ là điểm để tham chiếu xác định xác suất bắt đầu trong mô hình và còn là yếu tố mô tả đối tượng được áp dụng biện pháp can thiệp vì vấn đề quyết định là xác định được lựa chọn cho chi phí-hiệu quả nhất trên nhóm đối tượng cụ thể [58], [79].

+Xác suất chuyển đổi biến đổi theo thời gian trong trạng thái bệnh là trường hợp xác suất chuyển đổi thay đổi khi thời gian lưu lại trạng thái đó tăng. Loại xác suất này thường phức tạp và khó thực hiện vì liên quan đến số lượng bệnh nhân lưu lại trạng thái bệnh đó; trong khi đó mô hình Markov có nhược điểm là không có bộ nhớ và do đó không thể theo dõi khi nào bệnh nhân vào trạng thái bệnh đó và lưu lại đó bao lâu [58], [79].

1.3.3.3. Các bước xây dựng mô hình quyết định

Xây dựng mô hình quyết định gồm 6 bước có thể được khái quát hóa trong Hình 1.8.


Bước 1

Bước 2

Bước 3


Bước 4

Bước 5

Bước 6


Cụ thể hóa vấn đề ra quyết định

Xác định phạm vi nghiên cứu của mô hình

Cấu trúc hóa mô hình

Xác định và tổng

hợp chứng cứ

Phân tích tính bất định và tính không đồng nhất

Đánh giá tính giá trị của các nghiên cứu bổ sung

Hình 1.8. Các bước phát triển mô hình quyết định Bước 1. Cụ thể hóa vấn đề ra quyết định

Trong đó, cần phải xác định rõ đối tượng bệnh nhân, đặc điểm cụ thể của người bệnh, phương pháp điều trị, quan điểm nghiên cứu cũng như các nguồn thông tin sử dụng. Trong quá trình này, các phương pháp điều trị có thể được giả định bao gồm nhiều phương án điều trị hơn so với thực tế mà từ đó là cơ sở để đề ra những phương pháp thay thế khi bệnh nhân thất bại với phương pháp nào đó [68].

Bước 2. Xác định phạm vi nghiên cứu của mô hình

Mô hình là sự đơn giản hóa thế giới thực và do đó không thể bao quát hóa tất cả trong thực tế. Chính vì vậy, cần thiết để lựa chọn và giới hạn những gì cần đưa vào trong mô hình bởi vì điều này ảnh hưởng đến các vấn đề chung trong đánh giá kinh tế y tế như xác định quan điểm nghiên cứu, phương pháp can thiệp, chi phí, hiệu quả....cũng như quan trọng trong việc xét đến khả năng bao phủ của mô hình khi thực hiện [58], [68]. Việc quyết định phạm vi nghiên cứu dựa trên tính sẵn có của dữ liệu thu thập được và tính phức tạp khi thực hiện mô hình hóa [58].

Bước 3. Cấu trúc hóa mô hình quyết định

Bước tiếp theo là lựa chọn loại mô hình phù hợp bằng cách dựa trên các biện pháp can thiệp, quá trình diễn tiến tự nhiên của bệnh và ảnh hưởng của các can thiệp lên diễn tiến bệnh đó. Không có quy tắc chung nào về lựa chọn mô hình phù hợp nhất cho một bối cảnh nhất định. Tuy nhiên, một số đặc điểm ảnh hưởng đến việc lựa chọn mô hình gồm: tình trạng bệnh là cấp hay mạn tính, nguy cơ xảy ra

trạng thái bệnh có thay đổi theo thời gian hay hằng định, hiệu quả của can thiệp được giả định hằng định hay giới hạn trong thời gian nhất định…[58], [68].

Bước 4. Xác định và tổng hợp chứng cứ

Việc tổng hợp tất cả các dữ liệu có liên quan vào mô hình cần phù hợp với các nguyên tắc chung của y học thực chứng, trong đó thử nghiệm lâm sàng ngẫu nhiên có đối chứng được xếp hạng cao trong tháp chứng cứ. Lý tưởng nhất là dựa trên dữ liệu của từng bệnh nhân, tuy nhiên hồi quy meta (meta-regression) có thể được sử dụng trong một số trường hợp.

Bước 5. Phân tích tính bất định và tính không đồng nhất trong mô hình

Tính bất định và tính không đồng nhất tồn tại trong tất cả các nghiên cứu đánh giá kinh tế y tế được thảo luận trong mục 1.3.3.4.

Bước 6. Đánh giá giá trị của những nghiên cứu bổ sung

Giá trị của mô hình quyết định là mang lại một khuôn mẫu có cấu trúc các bằng chứng sẵn có như một đầu vào cho vấn đề nghiên cứu. Dựa trên mô hình, thông qua phương pháp phân tích độ nhạy, tính bất định của các quyết định bổ sung liên quan đến một so sánh cụ thể có thể được đánh giá bằng cách đo lường một hoặc nhiều tham số cho từng phân nhóm với độ chính xác cao hơn [58], [68].

1.3.3.4. Phân tích tính không chắc chắn của mô hình quyết định

Tính không chắc chắn của mô hình quyết định gồm: tính dao động (variability), tính không đồng nhất (heterogeneity) và tính bất định (uncertainty). Các phương pháp giải quyết tính dao động, tính không đồng nhất và tính bất định trong phân tích chi phí-hiệu quả dựa trên mô hình được trình bày trong Bảng 1.5

Bảng 1. 5. Các phương pháp giải quyết tính không chắc chắn


Loại

Phương pháp phân tích

Tính dao động

Phản ảnh bởi độ lệch chuẩn, vi mô phỏng

Tính không đồng nhất

Phân tích nhóm

Tính bất định cấu trúc (structural) hay quyết định

(decision)

Phân tích độ nhạy 1 chiều/ phân tích bổi cảnh, tham số hóa, tính sai lệch của mô hình

Tính bất định tham số

Phân tích độ nhạy xác suất

Tính dao động (variability)

Tính dao động là sự biến đổi hay sự ngẫu nhiên quan sát được khi thu thập dữ liệu trong một quần thể đồng nhất. Tính dao động phản ánh qua độ lệch chuẩn quanh giá trị trung bình. Tính dao động không giảm khi tăng cỡ mẫu [58].

Tính dao động trong các mô hình quyết định, đặc biệt là các mô hình đoàn hệ, phần lớn là sản phẩm phụ của quá trình mô hình hóa, và vì vậy để loại bỏ tính dao động ra khỏi kết quả là phải thực hiện từng bước khi phân tích, hay nói một cách khác là thực hiện chạy lại mô hình và trình bày các kết quả khác nhau của mô hình tương ứng với từng giả định được đặt ra [68], [79].

Tính không đồng nhất (heterogeneity)

Tính không đồng nhất liên quan đến sự khác biệt quan sát được giữa đặc điểm của các bệnh nhân mà có thể giải thích được. Tính không đồng nhất không được xem là tính bất định vì những khác biệt xảy ra là có thể giải thích được [57].

Tính bất định (uncertainty)

Gồm có 2 loại là tính bất định về cấu trúc và tính bất định về tham số:

- Tính bất định về cấu trúc liên quan đến các quyết định và giả định được đặt ra trong mô hình. Phương pháp đơn giản để giải quyết tính bất định về cấu trúc là tạo ra các bối cảnh thay thế, mỗi bối cảnh dựa trên đặc điểm kỹ thuật đại diện cho các giả định thay thế và phán đoán về cấu trúc của mô hình [54], [79].

- Tính bất định về tham số liên quan đến độ chính xác của các tham số đầu vào được ước tính trong mô hình vì thông thường các giá trị này sẽ được ước tính từ dữ liệu được lấy mẫu như: xác suất chuyển đổi trạng thái, chi phí, hiệu quả và ảnh hưởng điều trị. Tính bất định này là do tham số đầu vào tính toán ở một mẫu nhất định nhưng lại suy ra cho cả quần thể; do đó, nó sẽ giảm khi tăng cỡ mẫu [58], [68].

Tính bất định về tham số trong mô hình quyết định được giải quyết bằng phân tích độ nhạy đơn giản (một chiều và đa chiều) dựa trên biến đổi từng tham số đầu vào trong 1 khoảng xác định và đánh giá ảnh hưởng của sự biến đổi này đến kết quả của mô hình. Tuy nhiên, phương pháp này có nhiều hạn chế [68]. Một dạng

Xem toàn bộ nội dung bài viết ᛨ

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 17/05/2024