Đánh giá quy trình phục vụ tại nhà hàng Parkview của khách sạn New World Saigon Hotel - 22


NHANVIEN5

.636





COSOVATCHAT4

.632


.372


-.400

NHANVIEN2

.614





NHANVIEN1

.584





NHANVIEN4

.573


-.419


.308

CHATLUONGDOAN3

.431

.726




CHATLUONGDOAN2

.367

.714




CHATLUONGDOAN4

.413

.693




CHATLUONGDOAN1

.413

.678




CHATLUONGDOAN5

.400

.510



-.377

NHANVIEN6

.433

-.436


.364

-.403

SUPHOIHOP1

.435


.682



SUPHOIHOP3

.387


.549

.322

.392

NHANVIEN3

.441


-.503

.487


SUPHOIHOP2

.334


.330

.495

.565

Có thể bạn quan tâm!

Xem toàn bộ 184 trang tài liệu này.

Extraction Method: Principal Component Analysis.

a. 5 components extracted.


Rotated Component Matrixa



Component

1

2

3

4

5

COSOVATCHAT2

.819





COSOVATCHAT3

.768




SUPHOIHOP4

.724




NHANVIEN5

.718




NHANVIEN1

.636




NHANVIEN2

.492


.386


CHATLUONGDOAN3


.850



CHATLUONGDOAN4


.814



CHATLUONGDOAN2


.807



CHATLUONGDOAN1


.798



CHATLUONGDOAN5


.578


.538

NHANVIEN3



.871



NHANVIEN6



.745

.309


COSOVATCHAT5

.370

.679



COSOVATCHAT1

.517

.653



NHANVIEN4

.441

.467

-.334


SUPHOIHOP1



.780

.392

COSOVATCHAT4

.480


.671


SUPHOIHOP2




.870

SUPHOIHOP3




.785

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.


Component Transformation Matrix


Component

1

2

3

4

5

1

.709

.382

.474

.262

.239

2

-.310

.902

-.296

.011

.052

3

.066

-.191

-.548

.666

.464

4

-.603

-.047

.587

.175

.509

5

.180

-.038

-.209

-.676

.682

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

Regression


Variables Entered/Removeda



Model

Variables

Entered

Variables

Removed


Method

1

meancl, meannhanvien,

meansph, meancsvcb


.


Enter

a. Dependent Variable: meanqt

b. All requested variables entered.


Model Summaryb



Model


R


R Square

Adjusted R

Square

Std. Error of the

Estimate

1

.711a

.505

.499

.36149


a. Predictors: (Constant), meancl, meannhanvien, meansph, meancsvc

b. Dependent Variable: meanqt


ANOVAa


Model

Sum of Squares

df

Mean Square

F

Sig.

1

Regression

40.711

4

10.178

77.885

.000b


Residual

39.857

305

.131




Total

80.568

309




a. Dependent Variable: meanqt

b. Predictors: (Constant), meancl, meannhanvien, meansph, meancsvc


Coefficientsa



Model


Unstandardized


Coefficients

Standardized

Coefficients


t


Sig.


Collinearity


Statistics

B

Std. Error

Beta

Tolerance

VIF

(Constant)

.313

.132


2.378

.018



meancsvc

-.037

.076

-.033

-.482

.630

.349

2.863

meannhanvien

.144

.088

.104

1.626

.105

.400

2.498

meansph

-.027

.056

-.023

-.486

.627

.751

1.332

meancl

.720

.043

.699

16.605

.000

.915

1.093

a. Dependent Variable: meanqt


Collinearity Diagnosticsa



Model


Dimension


Eigenvalue

Condition

Index

Variance

Proportions

(Constant)

meancsvc

meannhanvien

meansph

meancl

1

1

4.881

1.000

.00

.00

.00

.00

.00


2

.056

9.297

.00

.05

.03

.01

.81


3

.031

12.469

.11

.13

.06

.47

.11


4

.022

14.743

.59

.07

.04

.42

.06


5

.009

23.204

.30

.74

.87

.10

.01

a. Dependent Variable: meanqt



Residuals Statisticsa



Minimum

Maximum

Mean

Std. Deviation

N

Predicted Value

1.0919

4.0394

1.7594

.36298

310

Residual

-1.32650

1.86023

.00000

.35915

310

Std. Predicted Value

-1.839

6.281

.000

1.000

310

Std. Residual

-3.669

5.146

.000

.994

310

a. Dependent Variable: meanqt


Charts


6 281 000 1 000 310 Std Residual 3 669 5 146 000 994 310 a Dependent Variable meanqt Charts 1


6 281 000 1 000 310 Std Residual 3 669 5 146 000 994 310 a Dependent Variable meanqt Charts 2


6 281 000 1 000 310 Std Residual 3 669 5 146 000 994 310 a Dependent Variable meanqt Charts 3

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 12/07/2022