C.he, Y.chen, L. Guo, R. Yin, T. Qiu, Catalytic Ozonation Of Nh4+-N In Wastewater Over Composite Metal Oxide Catalyst, Journal Of Rare Earths Available, 2020, 11, 1 – 33.

164. P. Neta, P. Maruthamuthu, P. M. Carton, R. W. Fessenden, Formation and reactivity of the amino radical, Journal of Physical Chemistry, 1978, 82(17), 1875 –1878.

165. D. Bejan, T. Graham, N. J. Bunce, Chemical methods for the remediation of ammonia in poultry rearing facilities: A review, Biosystems engineering, 2013, 115, 230 – 243.

166. C.He, Y.Chen, L. Guo, R. Yin, T. Qiu, Catalytic ozonation of NH4+-N in wastewater over composite metal oxide catalyst, Journal of Rare Earths Available, 2020, 11, 1 – 33.

167. K. L. Huang, K. C. Wei, M. H. Chen, C. Y. Ma, Removal of Organic and Ammonium Nitrogen Pollutants in Swine Wastewater Using Electrochemical Advanced Oxidation, Int. J. Electrochem. Sci., 2018, 13, 11418 – 11431.

168. P. A. Soloman, C. A. Basha, M. Velan, N. Balasubramanian, P. Marimuthu, Augmentation of biodegradability of pulp and paper industry wastewater by electrochemical pre-treatment and optimization by RSM, Sep. Purif. Technol., 2009, 69 (1), 109 – 117.

169. C. Chiemchaisri, Enhancement of Organic Oxidation and Nitrogen Removal in Membrane Separation Bioreactor for Domestic Wastewater Treatment. PhD thesis, Department of Urban Engineering, University of Tokyo, 1993, Tokyo.

170. I.S. Seo, S.I. Lee, Nutrient Removal of Swine Wastewater by the Intermittently Aerated Activated Sludge System, J. of KSEE., 1995, 17 (6), 637 – 649.

171. D. Navaratna, L. Shu, V. Jegatheesan, Evaluation of herbicide (persistent pollutant) removal mechanisms through hybrid membrane bioreactors, Bioresour. Technol., 2016, 200, 795 – 803.

172. V.M. Monsalvo, J.A. McDonald, S.J. Khan, P. Le-Clech, Removal of trace organics by anaerobic membrane bioreactors, Water Res., 2014, 49, 103 – 112.

173. Z. Jin, Z. Pan, S. Yu, C. Lin, Experimental study on pressurized activated sludge process for high concentration pesticide wastewater, J. Environ. Sci., 2010, 22 (9), 1342 – 1347.

174. E. Vasquez, A. Trapote, D. Prats, Elimination of pesticides with a membrane bioreactor and two different sludge retention times, Tecnol. cienc. Agua, 2018, 9 (5), 198 – 217.

175. E.D. Vásquez-Rodríguez, M.J. Moya-Llamas, M.A. Bernal-Romero, H.B. Del,

A. Trapote, P.R. Daniel, Eliminación/degradación de triazinas mediante biorreactor de membrana con post-tratamiento de ozonización” in 6th Engineering, Science and Technology Conference, 2017, 597 – 608

176. T. S. Almeida Lopes, R. Heòler, C. Bohner, G. B. A. Junior, R. F. Sena, Pesticides removal from industrial wastewater by a membrane bioreactor and post-treatment with either activated carbon, reverse osmosis or ozonation, Journal of Environmental Chemical Engineering, 2020, 8,104538, 1 – 32.

177. D. Mukherjee, P. Bhattacharya, A. Jana, S. Bhattacharya, S. Sarkar, S. Ghosh, S. Majumdar, S. Swarnakar, Synthesis of ceramic ultrafiltration membrane and application in membrane bioreactor process for pesticide remediation from wastewater, Process Safety and Environmental Protection,2018, 116, 22 – 33.

178. D. Tazdạt, R. Salah, H. Grib, N. Abdi, N. Mameri, Kinetic study on biodegradation of glyphosate with unacclimated activated sludge, Int. J. Environ. Health Res. 2018, 28, 448 – 459.

179. D. Feng, L. Malleret, G. Chiavassa, O. Boutin, A. Soric, Biodegradation capabilities of acclimated activated sludge towards glyphosate: Experimental study and kinetic modeling, Biochemical Engineering Journal, 2020, 161, 107643, 1 – 24.

180. H. Zhazn, Y. Feng, X. Fan, S. Chen, S, Recent advances in glyphosate biodegradation. Appl. Microbiol. Biotechnol. 2018, 102, 5033 – 5043.

181. M. Kamaz, S. M. Jones, Q. Xianghong, J.W. Michael, W. Zhang, S. R. Wickramasinghe, Atrazine Removal from MunicipalWastewater Using a Membrane Bioreactor. Int. J. Environ. Res. Public Health, 2020, 17, 2567, 1 – 14.

182. G. Tchobanoglous, F.L Burton. Wastewater Engineering: Treatment Reuse - (Fourth Edition), Metcalf & Eddy, 1991, New York.

183. P. Habermeyer, A. Sánchez, Optimization of the Intermittent Aeration in a Full- Scale Wastewater Treatment Plant Biological Reactor for Nitrogen Removal, Water Environment Research, 2005, 77 (3), 229 – 233.

184. B.S. Lim, B.C. Choi, S.W. Yu, C.G. Lee, Effects of operational parameters on aeration on/off time in an intermittent aeration membrane bioreactor, Desalination, 2007, 202, 77 – 82.

185. G. T. Seo, T. S. Lee, B. H. Moon, J. H. Lim, K. S. Lee, Two stage intermittent aeration membrane bioreactor for simultaneous organic, nitrogen and phosphorus removal, Water Sci Technol, 2000, 41 (10-11), 217 – 225.

186. Z. Ujang, M.R. Salim, S.L.Khor, The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor, Water Sci Technol, 2002, 46 (9), 193 – 200.

187. I. T. Yeom, Y. M. Nah, K.H. Ahn, Treatment of household wastewaterusing an intermittently aerated membrane bioreactor, Desalination, 1999, 124, 193 – 204.

188. J. Curko, M. Matosˇic´, H. Korajlija Jakopovic´, I. Mijatovic, Nitrogen removal in submerged MBR with intermittent aeration, Desalination and Water Treatment, 2010, 24, 7 – 19.

189. Lê Văn Cát, Xử lý nước thải giàu hợp chất nitơ và photpho, NXB. Khoa học Tự nhiên và Công nghệ, 2017, Hà Nội.

190. C. W. Randall, J. L. Barnard, H. D. Stensel, Design and retrofit of wastewater treatment plants for biological nutrient removal, Technomic Publishing Co. Inc., 1985, 103 – 105.

191. H. Xia, G. Ping, Y. Qian, Domestic wastewater treatment using a submerged membrane bioreactor, Progress in Biotechnology, 2000, 16, 2000, 163 – 168.

192. H. Xia, G. Ping, Y. Qian, Effect of sludge retention time on microbial behaviour in a submerged membrane bioreactor, Process Biochem, 2001, 36, 1001 – 1006.

193. E. Metcalf, Wastewater Engineering, Treatment, Reuse, 4 th Edition, 2002, New York.

194. C. H. Wong, G. W. Barton, J. P.Barford, The nitrogen cycle and its application in wastewater treatment, Handbook of Water and Wastewater Microbiology 2003, 427 – 439.

195. R. T. Nilusha, Y. Dawei, J. Zhang, Y. Wei, Eects of Solids Retention Time on the Anaerobic Membrane Bioreactor with Yttria-Based Ceramic Membrane Treating Domestic Wastewater at Ambient Temperature, Membranes 2020, 10, 196, 1 – 18.

196. H. Yeo, H. S. Lee, The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors, Environ. Technol, 2013, 34, 2105 – 2112.

197. D. Navaratna, J. Elliman, A. Cooper, L. Shu, K. Baskaran, V. Jegatheesan, Impact of herbicide ametryn on microbial communities in mixed liquor of a membrane bioreactor (MBR). Bioresource Technology, 2012, 113, 181 – 190.

198. J. Radjenović, M. Petrović, D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Research, 2009, 43 (3), 831 – 841.

199. R. Reif, S. Suárez, F. Omil, J.M. Lema, Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage, Desalination, 2008, 221 (1-3), 511 – 517.

200. V. Boonyaroj, C. Chiemchaisri, W. Chiemchaisri, S. Theepharaksapan, K. Yamamoto, Toxic organic micro-pollutants removal mechanisms in long-term operated membrane bioreactor treating municipal solid waste leachate, Bioresource Technology, 2012, 113, 174 – 180.

201. B. De-Gusseme, L. Vanhaecke, W. Verstraete, N. Boon, Degradation of acetaminophen by delftia tsuruhatensis and pseudomonas aeruginosa in a membrane bioreactor, Water Research, 2011, 45 (4), 1829 – 1837.

202. P. Chandrasekeran, M. Urgun-Demirtas, K. R. Pagilla, Aerobic Membrane Bioreactor for Ammonium-Rich Wastewater Treatment, Water Environment Research, 2007, 79 (11), 2353 – 2362.

203. A. Pollice, V. Tandoi, C. Lestingi, Influence of Aeration and Sludge Retention Time on Ammonium Oxidation to Nitrite and Nitrate, Water Res., 2002, 36, 2541 – 2546.

204. L. Duan, I.Moreno-Andrade, C. Huang, S. Xia, S.W. Hermanowicz, Effects of short solids retention time on microbial community in a membrane bioreactor, Bioresource Technology, 2009, 100, 3489 – 3496.

205. G. I. Hocaoglu., E. U. Cokgor, D. Orhon, Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water, Bioresour. Technol, 2011, 102 (6), 4333 – 4340.

206. B. Verrecht, T. Maere, L. Benedetti, I. Nopens, S. Judd, Modelbased energy optimisation of a small-scale decentralised membrane bioreactor for urban reuse, Water Res., 2010, 44 (14), 4047 – 4056.

207. L. Holakoo, G. Nakhla, A.S. Bassi, E.K. Yanful, Long term performance of MBR for biological nitrogen removal from synthetic municipal wastewater, Chemosphere, 2007, 66 (5), 849 – 857.

208. D.S. Lee, C.O. Jeon, J.M. Park, Biological nitrogen removal with enhanced phosphate uptake in a sequencing batch reactor using single sludge system, Water Res., 2001, 35, 3968 – 3976.

209. M. I. Aida Isma, A. Idris, R. Omar, A. R. Putri Razreena, Effects of SRT and HRT on Treatment Performance of MBR and Membrane Fouling, International Journal of Environmental and Ecological Engineering, 2014, 8, 488 – 492.

210. Z. Ahmed, J. Cho, B. R. Lim, K. G. Song, K. H. Ahn, Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor, Journal of Membrane Science, 2007, 287, 211 – 218.

211. S. S. Han, T. H. Bae, G. G. Jang, T. M. Tak, Influence of sludge retention time on membrane fouling and bioactivities in membrane bioreactor system, Process Biochemistry, 2005, 40, 2393 – 2400.

212. C. B. Ersu, S. K. Ong, E. Arslankaya, Y. W. Lee, Impact of solids residence time on biological nutrient removal performance of membrane bioreactor, Water research, 2010, 44, 3192 – 3202.

213. Z. Ahmed, J. Cho, B. R. Lim, K. G. Song, K. H Ahn, Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor, J. Membr. Sci., 2007, 287, 211 – 218.

214. T. Jiang, S. Myngheer, D. J. W. De Pauw, H. Spanjers, I. Nopens; M. D. Kennedy, G. Amy, P. A. Vanrolleghem, Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR), Water Res. 2008, 42, 4955 – 4964.

215. R. V. Broeck, J. V. Dierdonck, P. Nijskens, C. Dotremont, P. Krzeminski, V. D. Graaf, J. B. V. Lier, V. Impe, I.Y. Smets, The influence of solids retention time on activated sludge bioflocculation and membrane fouling in a membrane bioreactor (MBR), J. Membr. Sci., 2012. 401, 48 – 55.

216. J. Lebegue, M. Heran, A. Grasmick, MBR functioning under steady and unsteady state conditions. Impact on performances and membrane fouling dynamics. Desalination, 2008, 231(1-3), 209 – 218.

PHỤ LỤC

Phụ lục 1. Kết quả thí nghiệm quá trình Fenton điện hóa

Bảng 1.1B. Giá trị TOC ảnh hưởng mật độ dòng điện


Thời gian phản ứng (phút)

1,667 mA/cm2

3,333 mA/cm2

5 mA/cm2

6,667 mA/cm2

8,333 mA/cm2

16,667 mA/cm2

Nồng

độ (mg/L)

Hiệu

suất (%)

Nồng

độ (mg/L)

Hiệu

suất (%)

Nồng độ (mg/L)

Hiệu

suất (%)

Nồng độ (mg/L)

Hiệu

suất (%)

Nồng độ (mg/L)

Hiệu

suất (%)

Nồng

độ (mg/L)

Hiệu

suất (%)

0

3,62

0

3,62

0

3,62

0

3,62

0

3,62

0

3,62

0

15

2,11

41,71

2,03

43,92

1,88

48,07

1,75

51,66

1,48

59,11

1,98

45,30

30

1,56

56,91

1,46

59,67

1,38

62,88

1,15

68,23

0,81

77,62

1,44

60,22

45

1,38

61,88

1,27

64,92

1,19

67,13

0,94

74,03

0,64

82,32

1,22

66,30

60

1,32

63,54

1,20

66,85

1,05

70,99

0,82

77,35

0,56

84,53

1,13

68,78

Có thể bạn quan tâm!

Xem toàn bộ 229 trang tài liệu này.

Nghiên cứu xử lý hóa chất bảo vệ thực vật glyphosate trong nước bằng quá trình oxy hóa điện hóa kết hợp với thiết bị phản ứng sinh học – màng MBR - 22

1.2B. Giá trị nồng độ H2O2 tạo thành tại các điều kiện mật độ dòng khác nhau


Thời gian phản ứng

(phút)

J =1,667 mA/cm2

J = 3,333 mA/cm2

J =5 mA/cm2

J = 6,667 mA/cm2

J = 8,333 mA/cm2

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

0

0

0

0

0

0

15

2,75

3,07

3,10

3,26

3,32

30

3,84

4,26

4,54

4,82

5,03

45

4,07

4,41

4,76

5,15

5,43

60

4,16

4,47

4,77

5,17

5,44


Thời gian phản ứng (phút)

pH = 2

pH = 3

pH = 4

pH = 5

pH = 6

Nồng độ (mg/L)

Hiệu suất (%)

Nồng độ (mg/L)

Hiệu suất

(%)

Nồng độ (mg/L)

Hiệu suất

(%)

Nồng độ (mg/L)

Hiệu suất (%)

Nồng độ (mg/L)

Hiệu suất

(%)

0

3,62

0

3,62

0

3,62

0

3,62

0

3,62

0

15

1,97

45,55

1,48

59,11

1,67

53,86

2,12

41,34

2,23

38,23

30

1,43

60,50

0,78

78,45

1,05

70,99

1,63

54,97

1,77

51,10

45

1,27

65,02

0,63

82,59

0,89

75,40

1,46

59,77

1,66

54,24

60

1,15

68,17

0,58

83,97

0,81

77,48

1,38

61,87

1,58

56,35

1.4B. Giá trị nồng độ H2O2 tạo thành tại các điều kiện pH khác nhau


Thời gian

phản ứng (phút)

pH = 2

pH = 3

pH = 4

pH = 5

pH = 6

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

Nồng độ (mg/L)

0

0

0

0

0

0

15

2,64

3,07

2,87

2,35

2,07

30

4,19

4,71

4,55

4,02

3,41

45

4,52

4,99

4,87

4,38

3,81

60

4,53

5,00

4,87

4,43

3,85


Thời gian phản ứng

(phút)

[Fe2+] = 0,05 mM

[Fe2+] = 0,1 mM

[Fe2+] = 0,2 mM

[Fe2+] = 0,5 mM

Nồng độ

(mg/L)

Hiệu suất

(%)

Nồng độ

(mg/L)

Hiệu suất

(%)

Nồng độ

(mg/L)

Hiệu suất

(%)

Nồng độ

(mg/L)

Hiệu suất

(%)

0

3,62

0

3,62

0

3,62

0

3,62

0

15

2,10

41,99

1,64

54,70

1,98

45,30

2,19

39,50

30

1,35

62,71

0,90

75,14

1,26

65,19

1,51

58,29

45

1,22

66,30

0,66

81,77

1,08

70,17

1,34

62,98

60

1,13

68,78

0,56

84,53

0,97

73,20

1,23

66,02


1.6B. Giá trị TOC về ảnh hưởng của khoảng cách điện cực


Thời gian phản ứng (phút)

d = 0,5 cm

d = 1 cm

d = 1,5 cm

Nồng độ

(mg/L)

Hiệu suất

(%)

Nồng độ

(mg/L)

Hiệu suất

(%)

Nồng độ

(mg/L)

Hiệu suất

(%)

0

3,62

0

3,62

0

3,62

0

15

2,24

38,12

1,77

51,02

2,50

30,94

30

1,59

56,08

1,03

71,54

1,77

51,10

45

1,36

62,43

0,76

79,03

1,58

56,35

60

1,29

64,36

0,61

83,15

1,52

58,01

Xem tất cả 229 trang.

Ngày đăng: 07/01/2023
Trang chủ Tài liệu miễn phí