Nghiên cứu tổng hợp và đánh giá hoạt tính gây độc tế bào các dẫn xuất của benzimidazole và indole - 22

25. T.-S. Tran, M.-T. Le, T.-D. Tran and K.-M. Thai, Design of Curcumin and Flavonoid Derivatives with Acetylcholinesterase and Beta-Secretase Inhibitory Activities Using in Silico Approaches, Molecules, 2020, 25 (16), 3644.

26. A. Saberi, Effects of Benzimidazole derivatives on digestive system and cardiovascular system, JPHS, 2012, 1 (4), 99-107.

27. M. Noolvi, S. Agrawal, H. Patel, A. Badiger, M. Gaba and A. Zambre, Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole, Arab. J. Chem., 2014, 7 (2), 219-226.

28. J. M. Gardiner, C. R. Loyns, A. Burke, A. Khan and N. Mahmood, Synthesis and HIV-1 inhibition of novel benzimidazole derivatives, Bioorganic Med. Chem. Lett., 1995, 5 (12), 1251-1254.

29. K. Starčević, M. Kralj, K. Ester, I. Sabol, M. Grce, K. Pavelić and G. Karminski-Zamola, Synthesis, antiviral and antitumor activity of 2- substituted-5-amidino-benzimidazoles, Bioorg. Med. Chem., 2007, 15 (13), 4419-4426.

30. M. Taha, A. Mosaddik, F. Rahim, S. Ali, M. Ibrahim and N. B. Almandil, Synthesis, antiglycation and antioxidant potentials of benzimidazole derivatives, J. King Saud Univ. Sci., 2020, 32 (1), 191-194.

31. A. M Youssef, A. Malki, M. H Badr, R. Y Elbayaa and A. S Sultan, Synthesis and anticancer activity of novel benzimidazole and benzothiazole derivatives against HepG2 liver cancer cells, Med. Chem., 2012, 8 (2), 151-162.

32. J. R. Kumar, J. Jawahar L and D. Pathak, Synthesis of benzimidazole derivatives: as anti-hypertensive agents, J. Chem., 2006, 3 (4), 278-285.

33. N. K. N. A. Zawawi, M. Taha, N. Ahmat, A. Wadood, N. H. Ismail, F. Rahim,

S. S. Azam and N. Abdullah, Benzimidazole derivatives as new α-glucosidase inhibitors and in silico studies, Bioorg. Chem., 2016, 64 29-36.

Có thể bạn quan tâm!

Xem toàn bộ 186 trang tài liệu này.

34. M. Gaba, S. Singh and C. Mohan, Benzimidazole: an emerging scaffold for analgesic and anti-inflammatory agents, Eur. J. Med. Chem., 2014, 76 494- 505.

35. L. Feiler, T. Raimann, T. Eichenberger and M. Hügin, WO2004050768A3,

Nghiên cứu tổng hợp và đánh giá hoạt tính gây độc tế bào các dẫn xuất của benzimidazole và indole - 22

Benzimidazole-pyridone-based azo dyes, 2007.

36. J. Gotze, H. Depoorter and T. H. Ghys, US3623882A, Benzimidazole derivatives and their use in photography, 1971.

37. J.-P. Rocher and D. Cavey, US5446059A, Benzimidazole-derived compounds, method for preparing the same, and therapeutical and cosmetic uses thereof, 1995.

38. B. Shroot, J. Eustache and J.-M. Bernardon, US4920140A, Benzimidazole derivatives and their thereapeutic and cosmetic use, 1990.

39. A. Kamal, V. Srinivasulu, M. Sathish, Y. Tangella, V. L. Nayak, M. N. Rao,

N. Shankaraiah and N. Nagesh, Palladium‐Catalyzed Aryl C H Activation and Tandem ortho‐Hydroxylation/Alkoxylation of 2‐Aryl Benzimidazoles: Cytotoxicity and DNA‐Binding Studies, Asian J. Org. Chem., 2014, 3 (1), 68- 76.

40. M. J. Akhtar, A. A. Khan, Z. Ali, R. P. Dewangan, M. Rafi, M. Q. Hassan, M.

S. Akhtar, A. A. Siddiqui, S. Partap and S. Pasha, Synthesis of stable benzimidazole derivatives bearing pyrazole as anticancer and EGFR receptor inhibitors, Bioorg. Chem., 2018, 78 158-169.

41. H. T. B. Bui, Q. T. K. Ha, W. K. Oh, D. D. Vo, Y. N. T. Chau, C. T. K. Tu, E.

C. Pham, P. T. Tran, L. T. Tran and H. Van Mai, Microwave assisted synthesis and cytotoxic activity evaluations of new benzimidazole derivatives, Tetrahedron Lett., 2016, 57 (8), 887-891.

42. U. A. Çevik, D. Osmaniye, B. K. Çavuşoğlu, B. N. Sağlik, S. Levent, S. Ilgin,

N. Ö. Can, Y. Özkay and Z. A. Kaplancikli, Synthesis of novel benzimidazole– oxadiazole derivatives as potent anticancer activity, Med. Chem. Res., 2019, 28 (12), 2252-2261.

43. U. Acar Çevik, B. N. Sağlık, D. Osmaniye, S. Levent, B. Kaya Çavuşoğlu, A.

B. Karaduman, Ö. Atlı Eklioğlu, Y. Özkay and Z. A. Kaplancıklı, Synthesis, anticancer evaluation and molecular docking studies of new benzimidazole-1, 3, 4-oxadiazole derivatives as human topoisomerase types I poison, J. Enzyme Inhib. Med. Chem., 2020, 35 (1), 1657-1673.

44. P. Ertl, E. Altmann and J. M. McKenna, The most common functional groups in bioactive molecules and how their popularity has evolved over time, Journal of medicinal chemistry, 2020, 63 (15), 8408-8418.

45. L. M. Dudd, E. Venardou, E. Garcia-Verdugo, P. Licence, A. J. Blake, C. Wilson and M. Poliakoff, Synthesis of benzimidazoles in high-temperature water, Green Chem., 2003, 5 (2), 187-192.

46. J. Lu, B. Yang and Y. Bai, Microwave irradiation synthesis of 2-substituted benzimidazoles using PPA as a catalyst under solvent-free conditions, Synth. Commun., 2002, 32 (24), 3703-3709.

47. K. Niknam and A. Fatehi-Raviz, Synthesis of 2-substituted benzimidazoles and bis-benzimidazoles by microwave in the presence of alumina-methanesulfonic acid, J. Iran. Chem. Soc., 2007, 4 (4), 438-443.

48. R. Wang, X.-x. Lu, X.-q. Yu, L. Shi and Y. Sun, Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation, J. Mol. Catal. A Chem., 2007, 266 (1-2), 198-201.

49. M. A. Chari, D. Shobha and T. Sasaki, Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts, Tetrahedron Lett., 2011, 52 (43), 5575- 5580.

50. R. Trivedi, S. K. De and R. A. Gibbs, A convenient one-pot synthesis of 2- substituted benzimidazoles, J. Mol. Catal. A Chem., 2006, 245 (1-2), 8-11.

51. S. M. Inamdar, V. K. More and S. K. Mandal, CuO nano-particles supported on silica, a new catalyst for facile synthesis of benzimidazoles, benzothiazoles and benzoxazoles, Tetrahedron Lett., 2013, 54 (6), 579-583.

52. C. E. Phạm and T. B. H. Bùi, Tổng hợp dẫn xuất 2-benzimidazolyl-4-oxo-4H- quinolizine bằng phương pháp hỗ trợ vi sóng, Tạp chí Khoa học Trường Đại học Cần Thơ, 2015, 37 75-81.

53. S. I. Alaqeel, Synthetic approaches to benzimidazoles from o- phenylenediamine: A literature review, J. Saudi Chem. Soc., 2017, 21 (2), 229- 237.

54. R. J. Sundberg, The chemistry of indoles, Elsevier, Netherlands, 1970.

55. Q. S. Trần, Cơ Sở Hoá Học Dị Vòng, Nhà xuất bản Đại học Sư phạm, 2012.

56. R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, M. Shelley and J. K. Perry, Glide: a new

approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem., 2004, 47 (7), 1739-1749.

57. Y. Ban, Y. Murakami, Y. Iwasawa, M. Tsuchiya and N. Takano, Indole alkaloids in medicine, Med. Res. Rev., 1988, 8 (2), 231-308.

58. M. Vautier, C. Guillard and J.-M. Herrmann, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine, J. Catal., 2001, 201 (1), 46-59.

59. M. J. Hu, B. Zhang, H. K. Yang, Y. Liu, Y. R. Chen, T. Z. Ma, L. Lu, W. W. You and P. L. Zhao, Design, synthesis and molecular docking studies of novel indole–pyrimidine hybrids as tubulin polymerization inhibitors, Chem. Biol. Drug Des., 2015, 86 (6), 1491-1500.

60. Y. L. Zhang, Y. J. Qin, D. J. Tang, M. R. Yang, B. Y. Li, Y. T. Wang, H. Y. Cai, B. Z. Wang and H. L. Zhu, Synthesis and Biological Evaluation of 1‐ Methyl‐1H‐indole–Pyrazoline Hybrids as Potential Tubulin Polymerization Inhibitors, ChemMedChem, 2016, 11 (13), 1446-1458.

61. P. S. Ramya, S. Angapelly, L. Guntuku, C. S. Digwal, B. N. Babu, V. Naidu and A. Kamal, Synthesis and biological evaluation of curcumin inspired indole analogues as tubulin polymerization inhibitors, Eur. J. Med. Chem., 2017, 127 100-114.

62. A. Córdova, S.-i. Watanabe, F. Tanaka, W. Notz and C. F. Barbas, A highly enantioselective route to either enantiomer of both α-and β-amino acid derivatives, J. Am. Chem. Soc., 2002, 124 (9), 1866-1867.

63. D. F. Taber and P. K. Tirunahari, Indole synthesis: a review and proposed classification, Tetrahedron, 2011, 67 (38), 7195.

64. H. Zhao and A. Caflisch, Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics, Bioorg. Med. Chem. Lett., 2013, 23 (20), 5721-5726.

65. B. Trost, The atom economy--a search for synthetic efficiency, Science, 1991, 254 (5037), 1471-1477.

66. G. Sartori, R. Ballini, F. Bigi, G. Bosica, R. Maggi and P. Righi, Protection (and deprotection) of functional groups in organic synthesis by heterogeneous catalysis, Chem. Rev., 2004, 104 (1), 199-250.

67. A. K. Chakraborti and G. Kaur, One-pot synthesis of nitriles from aldehydes under microwave irradiation: influence of the medium and mode of microwave irradiation on product formation, Tetrahedron, 1999, 55 (46), 13265-13268.

68. J. F. A. Filho, B. C. Lemos, A. S. de Souza, S. Pinheiro and S. J. Greco, Multicomponent Mannich reactions: General aspects, methodologies and applications, Tetrahedron, 2017, 73 (50), 6977-7004.

69. G. Roman, Mannich bases in medicinal chemistry and drug design, Eur. J. Med. Chem., 2015, 89 743-816.

70. Đ. C. Phan, Các Quá Trình Cơ Bản Tổng Hợp Hoá Dược Hữu Cơ, NXB Bách Khoa Hà Nội, 2012.

71. A. E. Shchekotikhin, A. A. Shtil, Y. N. Luzikov, T. V. Bobrysheva, V. N. Buyanov and M. N. Preobrazhenskaya, 3-Aminomethyl derivatives of 4, 11- dihydroxynaphtho [2, 3-f] indole-5, 10-dione for circumvention of anticancer drug resistance, Bioorg. Med. Chem., 2005, 13 (6), 2285-2291.

72. A. Kumar, M. K. Gupta and M. Kumar, L-Proline catalysed multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction under solvent-free conditions, Green Chem., 2012, 14 (2), 290-295.

73. A. Kumar, M. K. Gupta, M. Kumar and D. Saxena, Micelle promoted multicomponent synthesis of 3-amino alkylated indoles via a Mannich-type reaction in water, RSC Adv., 2013, 3 (6), 1673-1678.

74. M. Vijayachandrasakar, M. Sivakami and S. Rajeswari, Evaluation of anti- microbial, anti-cancer, and anti-oxidant activity of novel 1-((1H-indol- 3yl)(phenyl) methyl) pyrrolidine-2, 5-dione Mannich base, Int. J. Pharm. Sci. Rev. Res., 2015, 33 178-181.

75. L.-H. Xie, J. Cheng, Z.-W. Luo and G. Lu, Mannich reaction of indole with cyclic imines in water, Tetrahedron Lett., 2018, 59 (5), 457-461.

76. K.-M. Thai, Q.-H. Dong, D.-P. Le, M.-T. Le and T.-D. Tran, Computational Approaches for the Discovery of Novel Hepatitis C Virus NS3/4A and NS5B Inhibitors, IGI Global, 2015.

77. V.-K. Tran-Nguyen, M.-T. Le, T. Tran, V. Truong and K. Thai, Peramivir binding affinity with influenza A neuraminidase and research on its mutations

using an induced-fit docking approach, SAR QSAR Environ. Res., 2019, 30 (12), 899-917.

78. X.-Y. Meng, H.-X. Zhang, M. Mezei and M. Cui, Molecular docking: a powerful approach for structure-based drug discovery, Curr. Comput. Aided Drug Des., 2011, 7 (2), 146-157.

79. N. S. Pagadala, K. Syed and J. Tuszynski, Software for molecular docking: a review, Biophys. Rev., 2017, 9 (2), 91-102.

80. C. M. Venkatachalam, X. Jiang, T. Oldfield and M. Waldman, LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites, J. Mol. Graph. Model., 2003, 21 (4), 289-307.

81. F. Österberg, G. M. Morris, M. F. Sanner, A. J. Olson and D. S. Goodsell, Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock, Proteins, 2002, 46 (1), 34-40.

82. M. Rarey, B. Kramer, T. Lengauer and G. Klebe, A fast flexible docking method using an incremental construction algorithm, J. Mol. Biol., 1996, 261 (3), 470-489.

83. A. N. Jain, Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine, J. Med. Chem., 2003, 46 (4), 499- 511.

84. G. Jones, P. Willett, R. C. Glen, A. R. Leach and R. Taylor, Development and validation of a genetic algorithm for flexible docking, J. Mol. Biol., 1997, 267 (3), 727-748.

85. M. Schapira, R. Abagyan and M. Totrov, Nuclear hormone receptor targeted virtual screening, J. Med. Chem., 2003, 46 (14), 3045-3059.

86. M. R. Mcgann, H. R. Almond, A. Nicholls, J. A. Grant and F. K. Brown,

Gaussian docking functions, Biopolymers, 2003, 68 (1), 76-90.

87. C. R. Corbeil, C. I. Williams and P. Labute, Variability in docking success rates due to dataset preparation, J. Comput. Aided Mol. Des., 2012, 26 (6), 775-786.

88. O. Trott and A. J. Olson, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem., 2010, 31 (2), 455-461.

89. S. Ruiz-Carmona, D. Alvarez-Garcia, N. Foloppe, A. B. Garmendia-Doval, S. Juhos, P. Schmidtke, X. Barril, R. E. Hubbard and S. D. Morley, rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids, PLoS Comput. Biol., 2014, 10 (4), e1003571.

90. W. J. Allen, T. E. Balius, S. Mukherjee, S. R. Brozell, D. T. Moustakas, P. T. Lang, D. A. Case, I. D. Kuntz and R. C. Rizzo, DOCK 6: Impact of new features and current docking performance, J. Comput. Chem., 2015, 36 (15), 1132-1156.

91. N. Moitessier, P. Englebienne, D. Lee, J. Lawandi, Corbeil and CR, Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go, Br. J. Pharmacol., 2008, 153 (S1), S7-S26.

92. F. Tessaro and L. Scapozza, How ‘Protein-Docking’ Translates into the New Emerging Field of Docking Small Molecules to Nucleic Acids?, Molecules, 2020, 25 (12), 2749-2764.

93. J. C. Wang, DNA topoisomerases, Annu. Rev. Biochem., 1996, 65 (1), 635- 692.

94. J. J. Champoux, DNA topoisomerases: structure, function, and mechanism, Annu. Rev. Biochem., 2001, 70 (1), 369-413.

95. J. L. Delgado, C.-M. Hsieh, N.-L. Chan and H. Hiasa, Topoisomerases as anticancer targets, Biochem. J., 2018, 475 (2), 373-398.

96. M. R. Redinbo, J. J. Champoux and W. G. Hol, Novel insights into catalytic mechanism from a crystal structure of human topoisomerase I in complex with DNA, Biochemistry, 2000, 39 (23), 6832-6840.

97. L. Stewart, G. C. Ireton and J. J. Champoux, The domain organization of human topoisomerase I, J. Biol. Chem., 1996, 271 (13), 7602-7608.

98. M. R. Redinbo, L. Stewart, P. Kuhn, J. J. Champoux and W. G. Hol, Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA, Science, 1998, 279 (5356), 1504-1513.

99. L. Stewart, M. R. Redinbo, X. Qiu, W. G. Hol and J. J. Champoux, A model for the mechanism of human topoisomerase I, Science, 1998, 279 (5356), 1534-1541.

100. M. E. Wall, M. C. Wani, C. Cook, K. H. Palmer, A. a. McPhail and G. Sim, Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminata1, 2, J. Am. Chem. Soc., 1966, 88 (16), 3888-3890.

101. B. L. Staker, M. D. Feese, M. Cushman, Y. Pommier, D. Zembower, L. Stewart and A. B. Burgin, Structures of three classes of anticancer agents bound to the human topoisomerase I− DNA covalent complex, J. Med. Chem., 2005, 48 (7), 2336-2345.

102. Y.-H. Hsiang, R. Hertzberg, S. Hecht and L.-F. Liu, Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I, J. Biol. Chem., 1985, 260 (27), 14873-14878.

103. M.-A. Bjornsti, P. Benedetti, G. A. Viglianti and J. C. Wang, Expression of human DNA topoisomerase I in yeast cells lacking yeast DNA topoisomerase I: restoration of sensitivity of the cells to the antitumor drug camptothecin, Cancer Res., 1989, 49 (22), 6318-6323.

104. T.-K. Li and L. F. Liu, Tumor cell death induced by topoisomerase-targeting drugs, Annual review of pharmacology and toxicology, 2001, 41 (1), 53-77.

105. O. Sordet, Q. A. Khan, K. W. Kohn and Y. Pommier, Apoptosis induced by topoisomerase inhibitors, Curr. Med. Chem. Anticancer Agents, 2003, 3 (4), 271-290.

106. I. Sović, S. Jambon, S. K. Pavelić, E. Markova-Car, N. Ilić, S. Depauw, M.-

H. David-Cordonnier and G. Karminski-Zamola, Synthesis, antitumor activity and DNA binding features of benzothiazolyl and benzimidazolyl substituted isoindolines, Bioorg. Med. Chem., 2018, 26 (8), 1950-1960.

107. C. Sheng, Z. Miao and W. Zhang, New strategies in the discovery of novel non-camptothecin topoisomerase I inhibitors, Curr. Med. Chem., 2011, 18 (28), 4389-4409.

Xem tất cả 186 trang.

Ngày đăng: 02/09/2022
Trang chủ Tài liệu miễn phí