[30] G. Tokuda, H. Watanabe, T. Matsumoto, and H. Noda (1997), “Cellulose digestion in the wood-eating higher termite, nasutitermes takasagoensis (shiraki): Distribution of cellulases and properties of endo-β-1,4-glucanase,” Zoolog. Sci., vol. 14, no. 1, pp. 83–93.
[31] A. Brune, “Symbiotic digestion of lignocellulose in termite guts,” Nat. Rev. Microbiol., vol. 12, no. 3, pp. 168–180, 2014, doi: 10.1038/nrmicro3182.
[32] M. Ohkuma (2003), “Termite symbiotic systems: efficient bio-recycling of lignocellulose,” Appl. Microbiol. Biotechnol., vol. 61, no. 1, pp. 1–9.
[33] A. Varm, B. K. Kolli, J. Paul, S. Saxena, and H. König (1994), “Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art,” FEMS Microbiol. Rev., vol. 15, no. 1, pp. 9–28.
[34] S. Sreeremya, S. Nishaa, and P. Rajiv (2016), “Optimization of Conditions and Production of Carboxy Methyl Cellulase by Bacteria Isolated from Higher Termite Soil,” J. Bioprocess. Biotech., vol. 6, no. 2, pp. 6–9.
[35] N. Academy, N. Academy, and U. States (1923), “Symbiosis between Termites and their Intestinal Protozoa Author ( s ): L . R . Cleveland Source : Proceedings of the National Academy of Sciences of the United States of Published by : National Academy of Sciences Stable,” vol. 9, no. 12, pp. 424– 428.
[36] T. Inoue, K. Murashima, J.-I. Azuma, A. Sugimoto, and M. Slaytor (1997), “Cellulose and Xylan Utilisation in the Lower Termite Reticulitermes speratus,” J. Insect Physiol., vol. 43, no. 3, pp. 235–242.
[37] C. Husseneder, B. R. Wise, D. Higashiguchi, C. Lee, and W. H. Robinson (2005), “Microbial diversity in the termite gut: a complementary approach combining culture and culture-independent techniques.,”.
[38] Y. Hongoh et al. (2006), “Phylogenetic diversity, localization, and cell morphologies of members of the candidate phylum TG3 and a subphylum in the phylum Fibrobacteres, recently discovered bacterial groups dominant in termite guts,” Appl. Environ. Microbiol., vol. 72, no. 10, pp. 6780–6788.
[39] A. Vi (2019), “Đánh giá sự đa dạng vi khuẩn có khả năng phân hủy cellulose và hemicellulose trong ruột mối Coptotermes Gestroi cư trú tại Miền Bắc,” Tạp chí Công nghệ sinh học, Tập17, Số. 3, 537–544.
Có thể bạn quan tâm!
- Ảnh Hưởng Của Môi Trường Nuôi Cấy Tới Khả Năng Sinh Enzym
- Xác Định Đặc Tính Di Truyền Và Các Gen Mã Hóa Enzym Thủy Phân Cellulose Của Chủng C. Cellulans Mp1
- Ảnh Hưởng Của Tiền Xử Lý Cơ Chất Tới Hiệu Suất Đường Hóa
- Đặc Điểm Các Chủng Vi Khuẩn Phân Lập Được Trên Đĩa Thạch Từ Các Mẫu Mối 01- 04
- Nghiên cứu cellulase từ vi khuẩn ruột mối phân lập ở Việt Nam - 16
- Nghiên cứu cellulase từ vi khuẩn ruột mối phân lập ở Việt Nam - 17
Xem toàn bộ 138 trang tài liệu này.
[40] H. R. K. Ali, N. F. Hemeda, and Y. F. Abdelaliem (2019), “Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion,” AMB Express, vol. 9, no. 1.
[41] Z. Bashir et al.( 2013), “Diversity and functional significance of cellulolytic microbes living in termite, pill-bug and stem-borer guts,” Sci. Rep., vol. 3, no. 1, p. 2558..
[42] A. Ferbiyanto, I. Rusmana, and R. Raffiudin (2015), “Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus,” HAYATI J. Biosci., vol. 22, no. 4, pp. 197–200.
[43] Z. Pourramezan, G. R. Ghezelbash, B. Romani, S. Ziaei, and A. Hedayatkhah (2012), “Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus
(Silvestri).,” Mikrobiologiia, vol. 81, no. 6, pp. 796–802.
[44] K. H. Meyer and L. Misch (1937), “Cellulose: Crystal Structure,” Helv. Chim. Acta, vol. 20, no. Cmc, pp. 232–244.
[45] H. Höfte, M. Gonneau, and S. Vernhettes (2007), “Biosynthesis of Cellulose,” Comprehensive Glycoscience: From Chemistry to Systems Biology, vol. 2–4. pp. 737–763.
[46] Z. Anwar, M. Gulfraz, and M. Irshad (2014), “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review,” J. Radiat. Res. Appl. Sci., vol. 7, no. 2, pp. 163–173.
[47] I. C. Hoeger, S. S. Nair, A. J. Ragauskas, Y. Deng, O. J. Rojas, and J. Y. Zhu (2013), “Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification,” Cellulose, vol. 20, no. 2, pp. 807–818.
[48] Y. Sun and J. Cheng (2002), “Hydrolysis of lignocellulosic materials for ethanol production: a review.,” Bioresour. Technol., vol. 83, no. 1, pp. 1–11.
[49] M. Meena, A. Zehra, M. K. Dubey, M. Aamir, and R. S. Upadhyay (2018), “Chapter 9 - Penicillium Enzymes for the Food Industries,” Elsevier, pp. 167– 186.
[50] S. E. Hobdey, B. S. Donohoe, R. Brunecky, M. E. Himmel, and Y. J. Bomble (2015), “Chapter 7 - New Insights into Microbial Strategies for Biomass Conversion,” M. E. B. T.-D. M. C. of B. to A. B. Himmel, Ed. Amsterdam:
Elsevier, pp. 111–127
[51] Phan Thị Phẩm, L. Thị T. Hương, Đ. Thị T. Lê, L. P. Đông (2017), “Sự chuyển đổi sinh khối Lignocellulose: Từ phế thải đến nguyên liệu tiềm năng cho sản xuất Ethanol sinh học thế hệ thứ hai tại Việt Nam,” Tạp chí khoa học Lạc Hồng, 159–164.
[52] Q. Xu et al.( 2011), “3.03 - Multifunctional Enzyme Systems for Plant Cell Wall Degradation,” M. B. T.-C. B. Second E. Moo-Young, Ed. Burlington: Academic Press, , pp. 15–25.
[53] M. J. Taherzadeh and K. Karimi (2007), "Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: A review", vol. 2, no. 4.
[54] L. Lin, X. Kan, H. Yan, and D. Wang (2012), “Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains,” Electron. J. Biotechnol., vol. 15, no. 3.
[55] S. A. Alrumman (2016), “Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid.,” Brazilian J. Microbiol. publication Brazilian Soc. Microbiol., vol. 47, no. 1, pp. 110– 119.
[56] R. K. Sukumaran, R. R. Singhania, and A. Pandey (2005), “Microbial cellulases - Production, applications and challenges,” J. Sci. Ind. Res. (India)., vol. 64, no. 11, pp. 832–844.
[57] R. C. Kuhad, R. Gupta, and A. Singh (2011), “Microbial cellulases and their industrial applications,” Enzyme Res., vol. 2011, no. 1.
[58] I. Batool, M. Gulfraz, M. J. Asad, F. Kabir, S. Khadam, and A. Ahmed (2018), “Cellulomonas sp. Isolated from termite gut for saccharification and fermentation of agricultural biomass,” BioResources, vol. 13, no. 1, pp. 752– 763.
[59] A. A. De Guilherme, P. V. F. Dantas, J. C. J. Soares, E. S. Dos Santos, F. A.
N. Fernandes, and G. R. De Macedo (2017), “Pretreatments and enzymatic hydrolysis of sugarcane bagasse aiming at the enhancement of the yield of glucose and xylose,” Brazilian J. Chem. Eng., vol. 34, no. 4, pp. 937–947.
[60] L. Han, J. Feng, S. Zhang, Z. Ma, Y. Wang, and X. Zhang (2012), “Alkali pretreated of wheat straw and its enzymatic hydrolysis.,” Brazilian J. Microbiol. [publication Brazilian Soc. Microbiol., vol. 43, no. 1, pp. 53–61.
[61] M. H. Tsai, W. C. Lee, W. C. Kuan, S. Sirisansaneeyakul, and A. Savarajara (Akaracharanya) (2018), “Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production,” Energy Sci. Eng., vol. 6, no. 6, pp. 683–692.
[62] K. Radhika, T. Chiranjeevi, A. Uma, A. V Umakanth, and K. B. Harshini (2016), “Parameter Optimization of Enzyme Saccharification for low Lignin High Biomass Sorghum ( CSV 15 X IS 21891 ) -1-1-1-1 and Estimation of Process Kinetics,” vol. 5, no. 9, pp. 20–27.
[63] Z. J. Li, X. L. Chen, and M. Ding, “Well-to-wheel Energy Consumption and Pollutant Emissions Comparison between Electric and Non-electric Vehicles: a Modeling Approach,” Procedia Environ. Sci., vol. 13, pp. 550–554, 2012, doi: https://doi.org/10.1016/j.proenv.2012.01.045.
[64] A. Sharma, J. A. Gilbert, and R. Lal (2016), “(Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans,” Sci. Rep., vol. 6, no. May.
[65] N. Pasari, M. Gupta, D. Eqbal, and S. S. Yazdani (2019), “Genome analysis of Paenibacillus polymyxa A18 gives insights into the features associated with its adaptation to the termite gut environment,” Sci. Rep., no. April, pp. 1–14.
[66] F. Zheng et al., “Genome sequencing of strain Cellulosimicrobium sp. TH-20 with ginseng biotransformation ability,” 3 Biotech, vol. 7, no. 4, pp. 1–10, 2017, doi: 10.1007/s13205-017-0850-2.
[67] M. H. Abdul Karim et al.(2020), “Draft genome sequence of Parvularcula flava strain NH6-79( T), revealing its role as a cellulolytic enzymes producer.,” Arch. Microbiol., vol. 202, no. 9, pp. 2591–2597.
[68] X. An et al.( 2021), “Cellulolytic bacterium characterization and genome functional analysis: An attempt to lay the foundation for waste management.,” Bioresour. Technol., vol. 321, p. 124462.
[69] Y. Li, L. Lei, L. Zheng, X. Xiao, H. Tang, and C. Luo, “Genome sequencing of gut symbiotic Bacillus velezensis LC1 for bioethanol production from bamboo shoots,” Biotechnol. Biofuels, vol. 13, no. 1, pp. 1–13, 2020.
[70] A. Tartar, M. M. Wheeler, X. Zhou, M. R. Coy, D. G. Boucias, and M. E. Scharf (2009), “Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes,” Biotechnol. Biofuels, vol. 2, no. 1, pp. 1–19.
[71] N. Y. I. M. Saptarini and W. Indriyati (2014.), “Innovare Academic Sciences ISOLATION OF CELLULOLYTIC BACTERIA FROM TERMITES WITH CELLULOSE OF CORN COBS AS A CARBON SOURCE,” vol. 6, no. 4, pp. 4–6.
[72] T. Shankar and L. Isaiarasu, “Cellulase Production by Bacillus pumilus EWBCM1 under Varying Cultural Conditions Department of Zoology , Ayya
Nadar Janaki Ammal College ( Autonomous ), Sivakasi-626124,” vol. 8, no. 1, pp. 40–45, 2011.
[73] I. I. Attp et al. (2014), “Một số phản ứng sinh hóa định danh vi sinh vật - Tài liệu, ebook.pdf,” pp. 1–33.
[74] B. Omafuvbe and I. O. Adewale (2016), “Research Article [ Araştırma Makalesi ] Purification and characterisation of a cellulase obtained from cocoa ( Theobroma cacao ) pod-degrading Bacillus coagulans Co4,” no. March.
[75] L. J. Yin, H. H. Lin, and Z. R. Xiao (2010), “Purification and characterization ofa cellulase from bacillus subtilis YJ1,” J. Mar. Sci. Technol., vol. 18, no. 3, pp. 466–471.
[76] E. M. Powers (1995), “Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts,” Appl. Environ. Microbiol., vol. 61, no. 10, pp. 3756–3758.
[77] Q.-T. Phi et al. (2010), “Assessment of root-associated paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper.,” J. Microbiol. Biotechnol., vol. 20, no. 12, pp. 1605–1613.
[78] R. M. Hopkins, B. P. Meloni, D. M. Groth, J. D. Wetherall, J. A. Reynoldson, and R. C. Thompson (1997), “Ribosomal RNA sequencing reveals differences between the genotypes of Giardia isolates recovered from humans and dogs living in the same locality.,” J. Parasitol., vol. 83, no. 1, pp. 44–51.
[79] K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar (2013), “MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.,” Mol. Biol. Evol., vol. 30, no. 12, pp. 2725–2729.
[80] Illumina Inc, “Illumina Sequencing Technology - YouTube,” Oct. 23, 2013, [Online]. Available:
https://www.illumina.com/documents/products/techspotlights/techspotlight_s equencing.pdf%0Ahttps://www.youtube.com/watch?v=womKfikWlxM.
[81] A. M. Bolger, M. Lohse, and B. Usadel (2014), “Trimmomatic: A flexible trimmer for Illumina sequence data,” Bioinformatics, vol. 30, no. 15, pp. 2114–2120.
[82] A. Bankevich et al.( 2012), “SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing.,” J. Comput. Biol., vol. 19, no. 5, pp. 455–477.
[83] Y. Wang, D. Coleman-Derr, G. Chen, and Y. Q. Gu (2015), “OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species.,” Nucleic Acids Res., vol. 43, no. W1, pp. W78-84.
[84] A. R. Wattam et al.( 2017), “Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center.,” Nucleic Acids Res., vol. 45, no. D1, pp. D535–D542.
[85] I. Lee, Y. Ouk Kim, S.-C. Park, and J. Chun (2016), “OrthoANI: An improved algorithm and software for calculating average nucleotide identity.,” Int. J. Syst. Evol. Microbiol., vol. 66, no. 2, pp. 1100–1103.
[86] T. K. Ghose and V. S. Bisaria (1987), “Measurement Of Hemicellulase
Activities Part 1: Xylanases,” Pure Appl. Chem., vol. 59, no. 12, pp. 1739–
1751.
[87] G. L. Miller (1959), “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Anal. Chem., vol. 31, no. 3, pp. 426–428.
[88] R. R. Ray (2015), “Microbial Avicelase : an Overview,” Bull. Env.Pharmacol. Life Sci, vol. 4, no. 4, pp. 3–13.
[89] O. H. LOWRY, N. J. ROSEBROUGH, A. L. FARR, and R. J. RANDALL (1951), “Protein measurement with the Folin phenol reagent.,” J. Biol. Chem., vol. 193, no. 1, pp. 265–275.
[90] “Tcvn 5714-2007.” .
[91] B. Hames, “Determination of Structural Carbohydrates and Lignin in Biomass Laboratory Analytical Procedure ( LAP ) Issue Date : April 2008 Revision Date : August 2012,” no. January, 2008.
[92] N. Q. Huy (1951), “Dẫn liệu về thành phần loài mối ( Insecta : Isoptera ) gây hại một số công trình di tích ở miền Bắc Việt Nam và hiệu quả phòng trừ,” vol. 3, pp. 49–552017.
[93] R. A. Arfah, H. Natsir, N. Atifah, T. R. Zarkoni, and M. Mahmud (2019), “Isolation and characterization of Soil Termites (Macrotermes gilvus) cellulolytic bacteria and activity determination of cellulase enzyme on newsprint substrates,” J. Phys. Conf. Ser., vol. 1341, no. 3.
[94] P. Gupta, K. Samant, and A. Sahu (2012), “Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential,” Int. J. Microbiol., no. January.
[95] M. Ramin, A. R. Alimon, and N. Abdullah (2009), “IDENTIFICATION OF CELLULOLYTIC BACTERIA ISOLATED FROM THE TERMITE COPTOTERMES CURVIGNATHUS (HOLMGREN),” J. Rapid Methods Autom. Microbiol., vol. 17, no. 1, pp. 103–116.
[96] D. Sharma et al.( 2015), “Isolation of Cellulolytic Organisms from the Gut Contents of Termites Native to Nepal and Their Utility in Saccharification and Fermentation of Lignocellulosic Biomass,” J. Biomass to Biofuel, vol. 2.
[97] G. M. Garrity, J. A. Bell, T. G. Lilburn, and E. Lansing (2015), “T Axonomic O Utline of the P Rokaryotes B Ergey ’ S M Anual ® of S Ystematic B Acteriology ,” no. May.
[98] A. Anand, A. A. Prem, S. John, S. Gowri, D. I. Gilwax, and P. Thirumalai (2021), “Isolation and Characterization of Bacteria from the Gut of Bombyx mori that Degrade Cellulose , Xylan , Pectin and Starch and Their Impact on Digestion,”.
[99] C. Tarayre et al. (2014), “Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere.,” World J. Microbiol. Biotechnol., vol. 30, no. 5, pp. 1655–1660.
[100] C. Mattéotti et al.( 2011), “New glucosidase activities identified by functional screening of a genomic DNA library from the gut microbiota of the termite Reticulitermes santonensis.,” Microbiol. Res., vol. 166, no. 8, pp. 629–642, Dec.
[101] M. W. Silby, C. Winstanley, S. A. C. Godfrey, S. B. Levy, and R. W. Jackson (2011), “Pseudomonas genomes: diverse and adaptable.,” FEMS Microbiol. Rev., vol. 35, no. 4, pp. 652–680.
[102] S. Huang, P. Sheng, and H. Zhang (2012), “Isolation and identification of cellulolytic bacteria from the gut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae).,” Int. J. Mol. Sci., vol. 13, no. 3, pp. 2563–2577.
[103] J.-H. Yoon, S.-J. Kang, P. Schumann, and T.-K. Oh (2007), “Cellulosimicrobium terreum sp. nov., isolated from soil.,” Int. J. Syst. Evol. Microbiol., vol. 57, no. Pt 11, pp. 2493–2497.
[104] D. Sharma et al. (2015), “Isolation of Cellulolytic Organisms from the Gut Contents of Termites Native to Nepal and Their Utility in Saccharification and Fermentation of Lignocellulosic Biomass,” J. Biomass to Biofuel, no. September.
[105] P. V. S. Dias, K. O. Ramos, I. Q. M. Padilha, D. A. M. Araújo, S. F. M. Santos, and F. L. H. Silva (2014), “Optimization of cellulase production by bacillus Sp. Isolated from sugarcane cultivated soil,” Chem. Eng. Trans., vol. 38, pp. 277–282.
[106] S. K. Pramanik et al.( 2021), “Fermentation optimization of cellulase production from sugarcane bagasse by Bacillus pseudomycoides and molecular modeling study of cellulase,” Curr. Res. Microb. Sci., vol. 2, no. November, p. 100013.
[107] B. C. Behera, R. R. Mishra, S. K. Singh, S. K. Dutta, and H. Thatoi (2016), “Cellulase from Bacillus licheniformis and Brucella sp. isolated from mangrove soils of Mahanadi river delta, Odisha, India,” Biocatal. Biotransformation, vol. 34, no. 1, pp. 44–53.
[108] H. Ariffin, N. Abdullah, M. S. Umi Kalsom, Y. Shirai, and M. . Hassan (2006), “Production and characterization of cellulase by Bacillus pumilus EB3,” Int. J. Eng. Technol., vol. 3, no. 1, pp. 47–53.
[109] R. Radhakrishnan, A. Hashem, and E. F. Abd Allah (2017), “Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments,” Front. Physiol., vol. 8, no. SEP, pp. 1–14.
[110] Y. Lugani, R. Singla, and B. Singh Sooch (2015), “Optimization of Cellulase Production from Newly Isolated Bacillus Sp. Y3,” J. Bioprocess. Biotech., vol. 5, no. 11, pp. 3–8.
[111] K. Singh, K. Richa, and H. Bose (2020), “Statistical media optimization and cellulase production from marine Bacillus Statistical media optimization and cellulase production from marine Bacillus VITRKHB,” no. April.
[112] K. A. A. Abou-Taleb, W. A. Mashhoor, S. A. Nasr, M. S. Sharaf, and H. H.
M. Abdel-Azeem (2009), “Nutritional and environmental factors affecting cellulase production by two strains of cellulolytic Bacilli,” Aust. J. Basic Appl. Sci., vol. 3, no. 3, pp. 2429–2436.
[113] C. Mawadza, R. Hatti-Kaul, R. Zvauya, and B. Mattiasson (2000), “Purification and characterization of cellulases produced by two Bacillus strains.,” J. Biotechnol., vol. 83, no. 3, pp. 177–187.
[114] P. Schumann, N. Weiss, and E. Stackebrandt (2001), “Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as
Cellulosimicrobium cellulans gen. nov., comb. nov.,” Int. J. Syst. Evol. Microbiol., vol. 51, no. 3, pp. 1007–1010.
[115] Ehab A. Beltagy (2012), “Purification of kappa (k)-carrageenase from locally isolated Cellulosimicrobium cellulans,” African J. Biotechnol., vol. 11, no. 52, pp. 11438–11446.
[116] L. S. H. Al-naamani, S. Dobretsov, J. Al-sabahi, and B. Soussi (2015), “Identification and Characterization of two Amylase producing Bacteria Cellulosimicrobium sp and Demequina sp. Isolated from Marine Ogarnisms"
Journal of Agricultural and Marine Science,” vol. 19, no. 1, pp. 8–15
[117] J. M. Song and D. Z. Wei (2010), “Production and characterization of cellulases and xylanases of Cellulosimicrobium cellulans grown in pretreated and extracted bagasse and minimal nutrient medium M9,” Biomass and Bioenergy, vol. 34, no. 12, pp. 1930–1934.
[118] A. Bakalidou, P. Kämpfer, M. Berchtold, T. Kuhnigk, M. Wenzel, and H. König (2002), “Cellulosimicrobium variabile sp. nov., a cellulolytic bacterium from the hindgut of the termite Mastotermes darwiniensis.,” Int. J. Syst. Evol. Microbiol., vol. 52, no. Pt 4, pp. 1185–1192.
[119] S. J. Chen, M. Q. Lam, S. Thevarajoo, F. Abd Manan, A. Yahya, and C. S. Chong (2020), “Genome analysis of cellulose and hemicellulose degrading Micromonospora sp. CP22,” 3 Biotech, vol. 10, no. 4, pp. 1–10.
[120] B. A. Goodman (2020), “Utilization of waste straw and husks from rice production: A review,” J. Bioresour. Bioprod., vol. 5, no. 3, pp. 143–162.
DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN
1. Đào Thị Thanh Xuân, Phí Quyết Tiến, Lê Thanh Hà (2016) “Characterization of cellulase preparation of Bacillus sp.G4 isolated from the Termites gut”, Tạp chí khoa học và công nghệ, tập 54(4A), 115-123
2. Nguyễn Thị Hiền, Đào Thị Thanh Xuân, Nguyễn Thị Láng, Tô Thị Nga, Lê Thanh Hà (2016), “Isolation, screening and the influence of cultivation factors on cellulase of Bacteria isolated from Termites gut”, Tạp chí khoa học và công nghệ, tập 54(4A), 89-97
3. Đào Thị Thanh Xuân, Nguyễn Tùng Lâm, Tô Thị Nga, Lê Thanh Hà (2019), “Optimization of Cultivation Medium for CMCase production from Bacillus subtilis G4”, the 14th Asian Biohydrogen Biorefinery and Bioprocess Symposium – ABBS 2019, Ha noi, 13-15th November 2019, 31-32
4. Đào Thị Thanh Xuân, Phí Quyết Tiến, Lê Thanh Hà (2020), “Enzymatic saccharification for alkaline pretreated rice straw biomass by cellulase from cellulosimibium sp.MP1”, Tạp chí Khoa học và Công nghệ, Số 6A, Tập 58.
5. Nguyen Thi-Hanh Vu, Tung Ngoc Quach, Xuan Thi-Thanh Dao, Ha Thanh Le, Chi Phuong Le, Lam Tung Nguyen, Lam Tung Le, Cuong Cao Ngo, Ha Hoang, Ha Hoang Chu, Quyet-Tien Phi. “A. genomic perspective on the potential of termite associated Cellulosimicobium cellulans MP1 as producer of plant-biomass acting enzyme and polysaccharide”, Peer J