Nâng cao tính kỵ nước và chống tia uv cho gỗ Bồ đề Styrax tonkinensis bằng công nghệ phủ ZnO - 17


[18]. Rong MZ và cộng sự (2001), Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism, Polymer, 42, (7), tr. 3301-4.

[19]. Feng L và cộng sự (2002), SuperHydrophobic Surfaces: From Natural to Artificial,

Adv Mater, 14, (24), tr. 1857-60.

[20]. Tshabalala M và Gangstad J (2003), Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition, J Coat Technol, 75, (943), tr. 37-43.

[21]. Chen N và cộng sự (2004), Effect of nano-CaCO3 on mechanical properties of PVC and PVC/Blendex blend, Polymer Testing, 23, (2), tr. 169-74.

[22]. Gao X và Jiang L (2004), Water-repellent legs of water striders, Nature, 432, tr. 36. [23]. Jopp J và cộng sự (2004), Wetting Behavior of Water Droplets on Hydrophobic‌

Microtextures of Comparable Size, Langmuir, 20, (23), tr. 10015-9.

[24]. Wang ZL (2004), Zinc oxide nanostructures: growth, properties and applications,

Journal of Physics: Condensed Matter, 16, (25), tr. R829-R58.

Có thể bạn quan tâm!

Xem toàn bộ 174 trang tài liệu này.

[25]. Wang R và cộng sự (2004), ZnO Nanorods grown on cotton fabrics at low temperature, Chem Phys Lett, 398, (1), tr. 250-5.

[26]. Espinosa R và cộng sự (2005), Nanocrystalline TiO2 photosensitized with natural polymers with enhanced efficiency from 400 to 600nm, Sol Energ Mat Sol C, 85, (3), tr. 359-69.

Nâng cao tính kỵ nước và chống tia uv cho gỗ Bồ đề Styrax tonkinensis bằng công nghệ phủ ZnO - 17

[27]. Wang RH và cộng sự (2005), UV-Blocking Property of Dumbbell-Shaped ZnO Crystallites on Cotton Fabrics, Inorganic Chemistry, 44, (11), tr. 3926-30.

[28]. Li X và cộng sự (2006), Surface-modification in situ of nano-SiO2 and its structure and tribological properties, Applied Surface Science, 252, (22), tr. 7856-61.

[29]. Xiong DS và cộng sự (2006), Wear properties of nano-Al2O3 /UHMWPE composites irradiated by gamma ray against a CoCrMo alloy, Biomedical Materials, 1, (3), tr. 175-9.

[30]. Chen XD và cộng sự (2007), Roles of anatase and rutile TiO2 nanoparticles in photooxidation of polyurethane, Polymer Testing, 26, (2), tr. 202-8.

[31]. Li P và cộng sự (2007), Synthesis of flower-like ZnO microstructures via a simple solution route, Mater Chem Phys, 106, (1), tr. 63-9.

[32]. Cui Z và cộng sự (2009), A facile dip-coating process for preparing highly durable superhydrophobic surface with multi-scale structures on paint films, Journal of Colloid and Interface Science, 337, (2), tr. 531-7.

[33]. Barberoglou M và cộng sự (2009), Laser structuring of water-repellent biomimetic surfaces, SPIE Newsroom, tr. DOI: 10.1117/2.1200901.1441.

[34]. Tuong VM và Jian L (2010), Effect of heat treatment on the change in color and dimensional stability of acacia hybrid wood, BioResources, 5, (2), tr. 1257-67.

[35]. Rassam G và cộng sự (2010), Effect of Nano-Silver treatment on densified wood properties. Part One: Swelling, recovery set, bending strength, 41st Annual Meeting of the International Research Group on Wood Protection, Biarritz, France, 9-13 May 2010 2010 ppIRG-WP 10-40533, tr.

https://www.cabdirect.org/cabdirect/abstract/20103342039.

[36]. Chengyu W và cộng sự (2010), Fabrication of superhydrophobic spherical-like α- FeOOH films on the wood surface by a hydrothermal method, China Paper Online; Link: http://wwwpapereducn/releasepaper/content/201201-587, tr.


[37]. Sun Q và cộng sự (2010), Prolonging the combustion duration of wood by TiO2 coating synthesized using cosolvent-controlled hydrothermal method, J Mater Sci, 45, (24), tr. 6661-7.

[38]. Wang C và cộng sự (2010), Synthesis and character of super-hydrophobic CaCO3 powder in situ, Powder Technology, 200, (1), tr. 84-6.

[39]. Wang C và cộng sự (2010), Synthesis and characterization of superhydrophobic wood surfaces, Journal of Applied Polymer Science, 119, (3), tr. 1667-72.

[40]. Tuong VM và Li J (2011), Changes caused by heat treatment in chemical composition and some physical properties of acacia hybrid sapwood, Holzforschung, 65, (1), tr. 67-72.

[41]. Wang S và cộng sự (2011), Fabrication of superhydrophobic wood surface by a sol– gel process, Applied Surface Science, 258, (2), tr. 806-10.

[42]. Sun Q và cộng sự (2011), Growth of hydrophobic TiO2 on wood surface using a hydrothermal method, Journal of Materials Science, 46, (24), tr. 7706-12.

[43]. Yu Y và cộng sự (2011), Improving photostability and antifungal performance of bamboo with nanostructured zinc oxide, Wood and Fiber Science, 43, (2), tr. 293- 304.

[44]. Mazahery A và Ostadshabani M (2011), Investigation on mechanical properties of nano-Al2O3-reinforced aluminum matrix composites, J Compos Mater, 45, (24), tr. 2579-86.

[45]. Rao AV và cộng sự (2011), Mechanically stable and corrosion resistant superhydrophobic sol–gel coatings on copper substrate, Applied Surface Science, 257, (13), tr. 5772-6.

[46]. Tshabalala MA và cộng sự (2011), Photostability and moisture uptake properties of wood veneers coated with a combination of thin sol-gel films and light stabilizers, Holzforschung, 65, (2), tr. 215-20.

[47]. Zhang X và cộng sự (2012), Easy-to-clean property and durability of superhydrophobic flaky γ-alumina coating on stainless steel in field test at a paper machine, Applied Surface Science, 258, (7), tr. 3102-8.

[48]. Taghiyari HR và cộng sự (2012), EFFECTS OF NANO-SILVER IMPREGNATION

ON SOME MECHANICAL PROPERTIES OF ICE-BLASTED WOOD

SPECIMENS, Journal of Tropical Forest Science, 24, (1), tr. 83-8.

[49]. Sun Q và cộng sự (2012), Improved UV resistance in wood through the hydrothermal growth of highly ordered ZnO nanorod arrays, Journal of Materials Science, 47, (10), tr. 4457-62.

[50]. Yu Y và cộng sự (2012), Surface functionalization of bamboo with nanostructured ZnO, Wood Science and Technology, 46, (4), tr. 781-90.

[51]. Dahoudi NA và cộng sự (2013), The Impact of Trioxadecanoic Acid on the Performance of Dye Sensitized Solar Cells Based Titanium Oxide Nanoparticles, Materials Focus, 2, (6), tr. 465-8.

[52]. Oberli L và cộng sự (2014), Condensation and freezing of droplets on superhydrophobic surfaces, Advances in Colloid and Interface Science, 210, tr. 47- 57.

[53]. Gao Y và cộng sự (2014), Highly Transparent and UV-Resistant Superhydrophobic SiO2-Coated ZnO Nanorod Arrays, Acs Appl Mater Inter, 6, (4), tr. 2219-23.

[54]. Chu TV và cộng sự (2014), Wettability of wood pressure-treated with TiO2 gel under hydrothermal conditions, BioResources, 9, (2), tr. 2396-404.


[55]. Chang H và cộng sự (2015), Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles, RSC Advances, 5, (39), tr. 30647-53.

[56]. Li J và cộng sự (2015), Fabrication of Robust Superhydrophobic Bamboo Based on ZnO Nanosheet Networks with Improved Water-, UV-, and Fire-Resistant Properties, Journal of Nanomaterials, 2015, tr. 1-9.

[57]. Vu Manh T và Tran Van C (2015), Improvement of color stability of Acacia hybrid wood by TiO2 nano sol impregnation, BioResoures, 10, (3), tr. 5417-25.

[58]. Gan W và cộng sự (2015), Multifunctional wood materials with magnetic, superhydrophobic and anti-ultraviolet properties, Applied Surface Science, 332, tr. 565-72.

[59]. Gao L và cộng sự (2015), A robust, anti-acid, and high-temperature–humidity- resistant superhydrophobic surface of wood based on a modified TiO2 film by fluoroalkyl silane, Surface and Coatings Technology, 262, tr. 33-9.

[60]. Jia S và cộng sự (2016), Facile and scalable preparation of highly wear-resistance superhydrophobic surface on wood substrates using silica nanoparticles modified by VTES, Applied Surface Science, 386, tr. 115-24.

[61]. Tian X và cộng sự (2016), Moving superhydrophobic surfaces toward real-world applications, Science, 352, (6282), tr. 142.

[62]. Kong L và cộng sự (2017), Growth of high-density ZnO nanorods on wood with enhanced photostability, flame retardancy and water repellency, Applied Surface Science, 407, tr. 479-84.

[63]. Dong Y và cộng sự (2017), In-Situ Chemosynthesis of ZnO Nanoparticles to Endow Wood with Antibacterial and UV-Resistance Properties, J Mater Sci Technol, 33, (3), tr. 266-70.

[64]. Qing Y và cộng sự (2017), Investigation on stability and moisture absorption of superhydrophobic wood under alternating humidity and temperature conditions, Results in Physics, 7, tr. 1705-11.

[65]. Xiang Y và cộng sự (2017), One-step Strategy to Prepare Utility ZnO–Stearic Acid (STA) Superhydrophobic Nanocoating, Chem Lett, 46, (9), tr. 1393-5.

[66]. Yao Y và cộng sự (2018), Differential anti-fungal effects from hydrophobic and superhydrophobic wood based on cellulose and glycerol stearoyl esters, Cellulose, 25, (2), tr. 1329–38.

[67]. Wallenhorst L và cộng sự (2018), UV-blocking properties of Zn/ZnO coatings on wood deposited by cold plasma spraying at atmospheric pressure, Applied Surface Science, 434, tr. 1183-92.

[68]. Esteves B và cộng sự (2008), Heat-induced colour changes of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood, Wood Science and Technology, 42, (5), tr. 369-84.

[69]. Tshabalala M và Sung L-P (2007), Wood surface modification by in-situ sol-gel deposition of hybrid inorganic–organic thin films, J Coat Technol Res, 4, (4), tr. 483- 90.

[70]. Obataya E và Minato K (2008), Potassium acetate-catalyzed acetylation of wood: extraordinarily rapid acetylation at 120 degrees C, Wood Science and Technology, 42, (7), tr. 567-77.

[71]. Hubert T và cộng sự (2010), Sol-gel derived TiO2 wood composites, J Sol-Gel Sci Techn, 53, (2), tr. 384-9.


[72]. Chang HT và Chang ST (2002), Moisture excluding efficiency and dimensional stability of wood improved by acylation, Bioresource Technology, 85, (2), tr. 201-4.

[73]. Beecher JF (2007), Organic materials: wood, trees and nanotechnology, Nat Nanotechnol, 2, (8), tr. 466-7.

[74]. Wang Z và cộng sự (2018), Facile Fabrication of a PDMS@Stearic Acid-Kaolin Coating on Lignocellulose Composites with Superhydrophobicity and Flame Retardancy, Materials, 11, (5), tr. 727.

[75]. Brischke C và cộng sự (2007), Quality control of thermally modified timber: Interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples, Holzforschung, 61, (1), tr. 19-22.

[76]. Hill CAS (2006), Wood Modification, John Wiley & Sons, Chichester. first ed ed.; 2006. 260 p.

[77]. Fan Z và Lu JG (2005), Zinc oxide nanostructures: synthesis and properties, J Nanosci Nanotechnol, 5, (10), tr. 1561-73.

[78]. Miyafuji H và Saka S (1997), Fire-resisting properties in several TiO2 wood- inorganic composites and their topochemistry, Wood Sci Technol, 31, (6), tr. 449-55.

[79]. Saka S và Ueno T (1997), Several SiO2 wood-inorganic composites and their fire- resisting properties, Wood Science and Technology, 31, (6), tr. 457-66.

[80]. Ling L và cộng sự (2006), Study of antimicrobial surface decorated wood-based panels, Scientia silvae sinicae, 42, (12), tr. 114-9.

[81]. Suyong H và cộng sự (2011), Antibacterial property of China Fir/TiO2 Composite,

Scientia silvae sinicae, 47, (1), tr. 181-4.

[82]. Wirunmongkol T và cộng sự (2013), Simple Hydrothermal Preparation of Zinc Oxide Powders Using Thai Autoclave Unit, Energy Procedia, 34, tr. 801-7.

[83]. Guo H và cộng sự (2016), Bio-Inspired Superhydrophobic and Omniphobic Wood Surfaces, Advanced Materials Interfaces, 4, (1), tr. 1600289-n/a.

[84]. Hưng NĐ và Hiền LT (2008), Các loài gỗ thông dụng ở Việt Nam, đặc điểm cấu tạo, tính chất vật lý, cơ học và hướng sử dụng, NXB Nông nghiệp, Hà Nội. 2008. 232 p.

[85]. Hưng NĐ và cộng sự (2009), Át lát cấu tạo, tính chất gỗ và tre Việt Nam, NXB Nông nghiệp, Hà Nội. 2009. 103 p.

[86]. Feng L và cộng sự (2003), Creation of a Superhydrophobic Surface from an Amphiphilic Polymer, Angewandte Chemie International Edition, 42, (7), tr. 800-2.

[87]. Zhang J và cộng sự (2004), Superhydrophobic PTFE Surfaces by Extension,

Macromolecular Rapid Communications, 25, (11), tr. 1105-8.

[88]. Zhang X và cộng sự (2006), Preparation and Photocatalytic Wettability Conversion of TiO2-Based Superhydrophobic Surfaces, Langmuir, 22, (23), tr. 9477-9.

[89]. Yuan Z và cộng sự (2007), Facile method to fabricate stable superhydrophobic polystyrene surface by adding ethanol, Surface and Coatings Technology, 201, (16– 17), tr. 7138-42.

[90]. Zhang X và cộng sự (2007), A transparent and photo-patternable superhydrophobic film, Chemical Communications, (46), tr. 4949-51.

[91]. Yang H và Deng Y (2008), Preparation and physical properties of superhydrophobic papers, Journal of Colloid and Interface Science, 325, (2), tr. 588-93.

[92]. Zheng Z và cộng sự (2009), Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution, Applied Surface Science, 255, (16), tr. 7263-7.


[93]. Su Y và cộng sự (2010), A peony-flower-like hierarchical mesocrystal formed by diphenylalanine, Journal of Materials Chemistry, 20, (32), tr. 6734-40.

[94]. Kong H và cộng sự (2010), Photocatalytic Antibacterial Capabilities of TiO2−Biocidal Polymer Nanocomposites Synthesized by a Surface-Initiated Photopolymerization, Environmental Science & Technology, 44, (14), tr. 5672-6.

[95]. Crick CR và Parkin IP (2010), Preparation and Characterisation of Super- Hydrophobic Surfaces, Chemistry - A European Journal, 16, (12), tr. 3568–88.

[96]. Park Y-B và cộng sự (2010), Superhydrophobic Cylindrical Nanoshell Array,

Langmuir, 26, (11), tr. 7661-4.

[97]. Chengyu Wang và cộng sự (2010), Synthesis and characterization of superhydrophobic wood surfaces, Appl Polym Sci, 119, (3), tr. 1667-72.

[98]. Rao AV và cộng sự (2010), Water repellent porous silica films by sol–gel dip coating method, Journal of Colloid and Interface Science, 352, (1), tr. 30-5.

[99]. Wang L và cộng sự (2011), Fabrication of superhydrophobic TPU film for oil–water separation based on electrospinning route, Materials Letters, 65, (5), tr. 869-72.

[100]. Hsieh C-T và cộng sự (2011), Improvement of water and oil repellency on wood substrates by using fluorinated silica nanocoating, Applied Surface Science, 257, (18), tr. 7997-8002.

[101]. Liu K và Jiang L (2011), Multifunctional Integration: From Biological to Bio- Inspired Materials, ACS Nano, 5, (9), tr. 6786-90.

[102]. Zhang F và cộng sự (2011), Preparation of superhydrophobic films on titanium as effective corrosion barriers, Applied Surface Science, 257, (7), tr. 2587-91.

[103]. Chorianopoulos NG và cộng sự (2011), Use of titanium dioxide (TiO2) photocatalysts as alternative means for Listeria monocytogenes biofilm disinfection in food processing, Food Microbiology, 28, (1), tr. 164-70.

[104]. Ebert D và Bhushan B (2012), Transparent, Superhydrophobic, and Wear-Resistant Coatings on Glass and Polymer Substrates Using SiO2, ZnO, and ITO Nanoparticles, Langmuir, 28, (31), tr. 11391-9.

[105]. Sun Q và cộng sự (2014), Preliminary observations of hydrothermal growth of nanomaterials on wood surfaces, Wood Science and Technology, 48, (1), tr. 51-8.

[106]. Zheng R và cộng sự (2015), Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures, Applied Surface Science, 328, tr. 453-8.


PHỤ LỤC



Ngày đăng: 10/02/2023