Mô phỏng dao động của tấm mỏng kích cỡ na nô mét - 16


[65] Li C. and Chou T.-W. (2003). A structural mechanics approach for the analysis of carbon nanotubes. International Journal of Solids and Structures, 40(10): pp. 2487- 2499.

[66] Li C. and Chou T.-W. (2006). Elastic wave velocities in single-walled carbon nanotubes. Physical Review B, 73(24): pp. 245407.

[67] Liew K., Lei Z., and Zhang L. (2015). Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Composite Structures, 120: pp. 90-97.

[68] Liew K.M., He X., and Kitipornchai S. (2006). Predicting nanovibration of multi- layered graphene sheets embedded in an elastic matrix. Acta Materialia, 54(16): pp. 4229-4236.

[69] Liew K.M. and Wang Q. (2007). Analysis of wave propagation in carbon nanotubes via elastic shell theories. International Journal of Engineering Science, 45(2-8): pp. 227-241.

[70] Lin S. (2012). Light-emitting two-dimensional ultrathin silicon carbide. The Journal of Physical Chemistry C, 116(6): pp. 3951-3955.

[71] Liu B., Huang Y., Jiang H., Qu S., and Hwang K. (2004). The atomic-scale finite element method. Computer methods in applied mechanics and engineering, 193(17- 20): pp. 1849-1864.

[72] Liu W.K., Karpov E., Zhang S., and Park H. (2004). An introduction to computational nanomechanics and materials. Computer Methods in Applied Mechanics and Engineering, 193(17-20): pp. 1529-1578.

[73] Lu J.P. (1997). Elastic properties of carbon nanotubes and nanoropes. Physical Review Letters, 79(7): pp. 1297.

Có thể bạn quan tâm!

Xem toàn bộ 133 trang tài liệu này.

[74] Manjanath A. and Singh A.K. (2014). Low formation energy and kinetic barrier of Stone–Wales defect in infinite and finite silicene. Chemical Physics Letters, 592: pp. 52-55.

[75] Marenić E., Sorić J., and Ibrahimbegovic A. (2012). Adaptive modelling in atomistic- to-continuum multiscale methods. Journal of the Serbian Society for Computational Mechanics, 6(1): pp. 169-198.

Mô phỏng dao động của tấm mỏng kích cỡ na nô mét - 16

[76] Meng L., Wang Y., Zhang L., Du S., Wu R., Li L., Zhang Y., Li G., Zhou H., and Hofer W.A. (2013). Buckled silicene formation on Ir (111). Nano letters, 13(2): pp. 685-690.

[77] Mittal G., Dhand V., Rhee K.Y., Park S.-J., and Lee W.R. (2015). A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. Journal of Industrial and Engineering Chemistry, 21: pp. 11-25.

[78] Mohammadi M., Goodarzi M., Ghayour M., and Farajpour A. (2013). Influence of in-plane pre-load on the vibration frequency of circular graphene sheet via nonlocal continuum theory. Composites Part B: Engineering, 51: pp. 121-129.

[79] Morbec J.M. and Rahman G. (2013). Role of vacancies in the magnetic and electronic properties of SiC nanoribbons: An ab initio study. Physical Review B, 87(11): pp. 115428.


[80] Mortazavi B. and Rémond Y. (2012). Investigation of tensile response and thermal conductivity of boron-nitride nanosheets using molecular dynamics simulations. Physica E: Low-dimensional Systems and Nanostructures, 44(9): pp. 1846-1852.

[81] Murmu T., McCarthy M., and Adhikari S. (2013). In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Composite Structures, 96: pp. 57-63.

[82] Nasdala L. and Ernst G. (2005). Development of a 4-node finite element for the computation of nano-structured materials. Computational Materials Science, 33(4): pp. 443-458.

[83] Nasdala L., Kempe A., and Rolfes R. (2010). The molecular dynamic finite element method (MDFEM). Computers Materials and Continua, 19(1): pp. 57.

[84] Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., and Firsov A.A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696): pp. 666-669.

[85] Novoselov K.S., Jiang Z., Zhang Y., Morozov S., Stormer H.L., Zeitler U., Maan J., Boebinger G., Kim P., and Geim A.K. (2007). Room-temperature quantum Hall effect in graphene. Science, 315(5817): pp. 1379-1379.

[86] Oh E.-S. (2011). Elastic properties of various boron-nitride structures. Metals and Materials International, 17(1): pp. 21-27.

[87] Özçelik V.O., Gurel H.H., and Ciraci S. (2013). Self-healing of vacancy defects in single-layer graphene and silicene. Physical Review B, 88(4): pp. 045440.

[88] Pacile D., Meyer J., Girit Ç., and Zettl A. (2008). The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Applied Physics Letters, 92(13): pp. 133107.

[89] Panchal M.B., Upadhyay S., and Harsha S. (2013). Vibrational characteristics of defective single walled BN nanotube based nanomechanical mass sensors: single atom vacancies and divacancies. Sensors and Actuators A: Physical, 197: pp. 111- 121.

[90] Pantano A., Parks D.M., and Boyce M.C. (2004). Mechanics of deformation of single-and multi-wall carbon nanotubes. Journal of the Mechanics and Physics of Solids, 52(4): pp. 789-821.

[91] Pei Q.-X., Sha Z.-D., Zhang Y.-Y., and Zhang Y.-W. (2014). Effects of temperature and strain rate on the mechanical properties of silicene. Journal of Applied Physics, 115(2): pp. 023519.

[92] Peng Q., Ji W., and De S. (2012). Mechanical properties of the hexagonal boron nitride monolayer: Ab initio study. Computational Materials Science, 56: pp. 11-17.

[93] Ponomarenko L., Schedin F., Katsnelson M., Yang R., Hill E., Novoselov K., and Geim A. (2008). Chaotic Dirac billiard in graphene quantum dots. Science, 320(5874): pp. 356-358.

[94] Prylutskyy Y.I., Durov S., Ogloblya O., Buzaneva E., and Scharff P. (2000). Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes. Computational Materials Science, 17(2-4): pp. 352-355.

[95] Qian D., Wagner G.J., Liu W.K., Yu M.-F., and Ruoff R.S. (2002). Mechanics of carbon nanotubes. Applied mechanics reviews, 55(6): pp. 495-533.


[96] Ramachandran K., Deepa G., and Namboori K. (2008). Computational chemistry and molecular modeling: principles and applications. Springer Science & Business Media.

[97] Rappé A.K., Casewit C.J., Colwell K., Goddard Iii W., and Skiff W. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American chemical society, 114(25): pp. 10024-10035.

[98] Riley K.F., Hobson M.P., and Bence S.J. (2006). Mathematical methods for physics and engineering: a comprehensive guide. Cambridge university press.

[99] Sadeghi M. and Naghdabadi R. (2010). Nonlinear vibrational analysis of single- layer graphene sheets. Nanotechnology, 21(10): pp. 105705.

[100] Sahin H., Sivek J., Li S., Partoens B., and Peeters F.M. (2013). Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites. Physical Review B, 88(4): pp. 045434.

[101] Şahin H., Cahangirov S., Topsakal M., Bekaroglu E., Akturk E., Senger R.T., and Ciraci S. (2009). Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Physical Review B, 80(15): pp. 155453.

[102] Sakhaee-Pour A., Ahmadian M., and Vafai A. (2009). Vibrational analysis of single- walled carbon nanotubes using beam element. Thin-walled structures, 47(6-7): pp. 646-652.

[103] Shi Y., Hamsen C., Jia X., Kim K.K., Reina A., Hofmann M., Hsu A.L., Zhang K., Li H., and Juang Z.-Y. (2010). Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano letters, 10(10): pp. 4134-4139.

[104] Sinha S., Barjami S., Iannacchione G., Schwab A., and Muench G. (2005). Off-axis thermal properties of carbon nanotube films. Journal of Nanoparticle Research, 7(6): pp. 651-657.

[105] Song J., Wu J., Huang Y., and Hwang K. (2008). Continuum modeling of boron nitride nanotubes. Nanotechnology, 19(44): pp. 445705.

[106] Song L., Ci L., Lu H., Sorokin P.B., Jin C., Ni J., Kvashnin A.G., Kvashnin D.G., Lou J., and Yakobson B.I. (2010). Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano letters, 10(8): pp. 3209-3215.

[107] Song Y.-L., Zhang Y., Zhang J.-M., Lu D.-B., and Xu K.-W. (2011). First-principles study of the structural and electronic properties of armchair silicene nanoribbons with vacancies. Journal of Molecular Structure, 990(1-3): pp. 75-78.

[108] Staaf L., Lundgren P., and Enoksson P. (2014). Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy, 9: pp. 128-141.

[109] Stoller M.D., Park S., Zhu Y., An J., and Ruoff R.S. (2008). Graphene-based ultracapacitors. Nano letters, 8(10): pp. 3498-3502.

[110] Sun C. and Liu K. (2007). Vibration of multi-walled carbon nanotubes with initial axial loading. Solid State Communications, 143(4-5): pp. 202-207.

[111] Sun X. and Zhao W. (2005). Prediction of stiffness and strength of single-walled carbon nanotubes by molecular-mechanics based finite element approach. Materials Science and Engineering: A, 390(1-2): pp. 366-371.


[112] Suryavanshi A.P., Yu M.-F., Wen J., Tang C., and Bando Y. (2004). Elastic modulus and resonance behavior of boron nitride nanotubes. Applied Physics Letters, 84(14): pp. 2527-2529.

[113] Takeda K. and Shiraishi K. (1994). Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 50(20): pp. 14916.

[114] Terrones M., Romo-Herrera J., Cruz-Silva E., López-Urías F., Munoz-Sandoval E., Velázquez-Salazar J., Terrones H., Bando Y., and Golberg D. (2007). Pure and doped boron nitride nanotubes. Materials today, 10(5): pp. 30-38.

[115] Tersoff J. (1989). Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Physical Review B, 39(8): pp. 5566.

[116] Topsakal M., Aktürk E., and Ciraci S. (2009). First-principles study of two-and one- dimensional honeycomb structures of boron nitride. Physical Review B, 79(11): pp. 115442.

[117] Topsakal M. and Ciraci S. (2010). Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first- principles density-functional theory study. Physical Review B, 81(2): pp. 024107.

[118] Tu Z.-c. and Ou-Yang Z.-c. (2002). Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Physical Review B, 65(23): pp. 233407.

[119] Tu Z. and Hu X. (2006). Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Physical Review B, 74(3): pp. 035434.

[120] Van Thanh N., Dinh Quang V., Dinh Khoa N., Seung-Eock K., and Dinh Duc N. (2018). Nonlinear dynamic response and vibration of FG CNTRC shear deformable circular cylindrical shell with temperature-dependent material properties and surrounded on elastic foundations. Journal of Sandwich Structures & Materials: pp. 1099636217752243.

[121] Van Tung H. (2018). Imperfection and tangential edge constraint sensitivities of thermomechanical nonlinear response of pressure-loaded carbon nanotube- reinforced composite cylindrical panels. Acta Mechanica, 229(5): pp. 1949-1969.

[122] Verma V., Jindal V., and Dharamvir K. (2007). Elastic moduli of a boron nitride nanotube. Nanotechnology, 18(43): pp. 435711.

[123] Wang Q. and Varadan V. (2006). Wave characteristics of carbon nanotubes.

International Journal of Solids and Structures, 43(2): pp. 254-265.

[124] Wang X., Yang H., and Dong K. (2005). Torsional buckling of multi-walled carbon nanotubes. Materials Science and Engineering: A, 404(1-2): pp. 314-322.

[125] Wang Y.-J., Wilkinson D.P., and Zhang J. (2011). Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chemical reviews, 111(12): pp. 7625-7651.

[126] Wang Y., Sun C., Sun X., Hinkley J., Odegard G.M., and Gates T.S. (2003). 2-D nano-scale finite element analysis of a polymer field. Composites Science and Technology, 63(11): pp. 1581-1590.

[127] Wang Y., Zhang C., Zhou E., Sun C., Hinkley J., Gates T.S., and Su J. (2006). Atomistic finite elements applicable to solid polymers. Computational materials science, 36(3): pp. 292-302.


[128] Watanabe K., Taniguchi T., and Kanda H. (2004). Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nature materials, 3(6): pp. 404.

[129] Yakobson B.I., Brabec C., and Bernholc J. (1996). Nanomechanics of carbon tubes: instabilities beyond linear response. Physical review letters, 76(14): pp. 2511.

[130] Yamijala S.S. and Pati S.K. (2013). Electronic and magnetic properties of zigzag boron-nitride nanoribbons with even and odd-line Stone-Wales (5–7 Pair) defects. The Journal of Physical Chemistry C, 117(7): pp. 3580-3594.

[131] Zhang C.-w. (2012). First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. Journal of Applied Physics, 111(4): pp. 043702.

[132] Zhang L. (2006). Stability analysis of atomic structures.

[133] Zhang S., Yang X., Numata Y., and Han L. (2013). Highly efficient dye-sensitized solar cells: progress and future challenges. Energy & Environmental Science, 6(5): pp. 1443-1464.

[134] Zhao H., Min K., and Aluru N. (2009). Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano letters, 9(8): pp. 3012-3015.

[135] Zienkiewicz O.C. and Taylor R.L. (2005). The finite element method for solid and structural mechanics. Elsevier.


DANH MỤC CÁC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN


Nghiên cứu sinh đã công bố được 05 công trình gồm:

[1] Nguyễn Danh Trường, Lê Minh Quý, Bùi Thanh Lâm, Bùi Hải Lê (2016), Dao động ngang tự do của tấm BN, SiC có xét tới ảnh hưởng của khuyết tật mất nguyên tử. Tuyển tập công trình Hội nghị khoa học và công nghệ toàn quốc về cơ khí – động lực lần V, Hà Nội, 13/10/2016. Tập 2, pp. 368-373.

[2] Nguyễn Danh Trường, Lê Minh Quý, Bùi Thanh Lâm, Bùi Hải Lê (2016), Sử dụng phương pháp phần tử hữu hạn nguyên tử tính toán dao động ngang tự do của tấm graphene. Tuyển tập công trình Hội nghị khoa học và công nghệ toàn quốc về cơ khí

– động lực lần V, Hà Nội, 13/10/2016. Tập 2, pp. 374-378.

[3] Bùi Thanh Lâm, Nguyễn Danh Trường, Lê Minh Quý, Bùi Hải Lê (2017). Ảnh hưởng của điều kiện biên và kích thước ống tới dao động tự do của ống na nô các-bon. Hội nghị Cơ học toàn quốc lần thứ X, Hà Nội, 8-9/12/2017 Tập 3. Cơ học vật rắn và biến dạng, quyển 1, pp. 654-661.

[4] Minh-Quy Le, Danh-Truong Nguyen, Thanh-Lam Bui, Hai-Le Bui (2017). Atomistic simulation of free transverse vibration of graphene, hexagonal SiC, and BN na nôsheets. Acta Mechanica Sinica, February 2017, Volume 33, Issue 1, pp 132–147 (SCI)

[5] Bùi Thanh Lâm, Nguyễn Danh Trường, Lê Minh Quý, Bùi Hải Lê (2017). Dao động ngang tự do của tấm graphene có xét tới ảnh hưởng của khuyết tật mất nguyên tử. Tạp chí Khoa học và Công nghệ Đại học công nghiệp Hà Nội. Số 38: pp. 175-179.

Xem tất cả 133 trang.

Ngày đăng: 19/01/2024
Trang chủ Tài liệu miễn phí