Khả năng sinh trưởng, sản xuất thịt của bò lai sind, F1 brahman × lai sind và F1 charolais × lai sind nuôi tại Đăk Lăk - 20


BÊ LAI F 1 BRAHMAN × LAI SIND 2 THÁNG TUỔI ĐẠT 70 KG BÊ LAI F 1 BRAHMAN × LAI SIND 1


BÊ LAI F1(BRAHMAN × LAI SIND), 2 THÁNG TUỔI ĐẠT 70 KG


BÊ LAI F 1 BRAHMAN × LAI SIND 12 THÁNG TUỔI BÊ LAI F 1 CHAROLAIS × LAI SIND TẠI 2


BÊ LAI F1(BRAHMAN × LAI SIND), 12 THÁNG TUỔI


BÊ LAI F 1 CHAROLAIS × LAI SIND TẠI EAKAR ĐĂK LĂK BÊ LAI F 1 CHAROLAIS × LAI SIND 3


BÊ LAI F1(CHAROLAIS × LAI SIND) TẠI EAKAR, ĐĂK LĂK


BÊ LAI F 1 CHAROLAIS × LAI SIND TẠI HỘI CHỢ BÒ HUYỆN EAKAR TỈNH ĐĂK LĂK ẢNH 4


BÊ LAI F1(CHAROLAIS × LAI SIND) TẠI HỘI CHỢ BÒ HUYỆN EAKAR TỈNH ĐĂK LĂK


ẢNH MÀU SẮC THỊT CỦA BÒ LAI SIND BẢO QUẢN LÚC 8 NGÀY ẢNH MÀU SẮC THỊT CỦA 5

ẢNH MÀU SẮC THỊT CỦA BÒ LAI SIND BẢO QUẢN LÚC 8 NGÀY

ẢNH MÀU SẮC THỊT CỦA BÒ LAI F1 BRAHMAN × LAI SIND BẢO QUẢN LÚC 8 NGÀY ẢNH MÀU 6

ẢNH MÀU SẮC THỊT CỦA BÒ LAI F1 (BRAHMAN × LAI SIND) BẢO QUẢN LÚC 8 NGÀY

ẢNH MÀU SẮC THỊT CỦA BÒ LAI F1 CHAROLAIS × LAI SIND BẢO QUẢN LÚC 8 NGÀY KẾT 7

ẢNH MÀU SẮC THỊT CỦA BÒ LAI F1 (CHAROLAIS × LAI SIND) BẢO QUẢN LÚC 8 NGÀY


KẾT QUẢ CHẠY HÀM GOMPERTZ BẰNG PHƯƠNG PHÁP MARQUART TRÊN PHẦN MỀM STARTGRAPHIS CENTURION IV

Nonlinear Regression - Lai Sind NNH

Dependent variable: Kg Independent variables:

Tháng


Function to be estimated: m*exp(-a*exp(-b*Tháng)) Initial parameter estimates:

m = 100.0

a = 1.0

b = 0.1


Estimation method: Marquardt

Estimation stopped due to convergence of residual sum of squares. Number of iterations: 5

Number of function calls: 22


Estimation Results




Asymptotic

95.0%



Asymptotic

Confidence

Interval

Parameter

Estimate

Standard Error

Lower

Upper

m

267.261

2.57414

262.216

272.306

a

2.41752

0.0257114

2.36713

2.46792

b

0.112467

0.00213622

0.10828

0.116654

Có thể bạn quan tâm!

Xem toàn bộ 170 trang tài liệu này.


Analysis of Variance

Source

Sum of Squares

Df

Mean Square

Model

2.44495E7

3

8.14982E6

Residual

171782.

1137

151.083

Total

2.46212E7

1140


Total (Corr.)

5.57748E6

1139



R-Squared = 96.9201 percent

R-Squared (adjusted for d.f.) = 96.9147 percent Standard Error of Est. = 12.2916

Mean absolute error = 9.902 Durbin-Watson statistic = 0.608713

Lag 1 residual autocorrelation = 0.694243


Residual Analysis


Estimation

Validation

n

1140


MSE

151.083


MAE

9.902


MAPE

10.9383


ME

-0.252355


MPE

-4.26433



The StatAdvisor

The output shows the results of fitting a nonlinear regression model to describe the relationship between Kg and 1 independent variables. The equation of the fitted model is


Kg = 267.261*exp(-2.41752*exp(-0.112467*Tháng))


In performing the fit, the estimation process terminated successully after 5 iterations, at which point the estimated coefficients appeared to converge to the current estimates.


The R-Squared statistic indicates that the model as fitted explains 96.9201% of the variability in Kg. The adjusted R- Squared statistic, which is more suitable for comparing models with different numbers of independent variables, is



96.9147%. The standard error of the estimate shows the standard deviation of the residuals to be 12.2916. This value can be used to construct prediction limits for new observations by selecting the Forecasts option from the text menu. The mean absolute error (MAE) of 9.902 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the residuals to determine if there is any significant correlation based on the order in which they occur in your data file.


The output also shows aymptotic 95.0% confidence intervals for each of the unknown parameters. These intervals are approximate and most accurate for large sample sizes. You can determine whether or not an estimate is statistically significant by examining each interval to see whether it contains the value 0. Intervals covering 0 correspond to coefficients which may well be removed form the model without hurting the fit substantially.



Plot of Fitted Model


300


250


200


Kg

150


100


50


0


0 3 6 9 12 15 18 21 24 Tháng Nonlinear Regression F1 Bra × LS NNH Dependent variable Kg 8

0 3 6 9 12 15 18 21 24

Tháng



Nonlinear Regression - F1(Bra × LS) NNH

Dependent variable: Kg Independent variables:

Thang


Function to be estimated: m*exp(-a*exp(-b*Thang)) Initial parameter estimates:

m = 100.0

a = 1.0

b = 0.1


Estimation method: Marquardt

Estimation stopped due to convergence of residual sum of squares. Number of iterations: 6

Number of function calls: 27


Estimation Results




Asymptotic

95.0%



Asymptotic

Confidence

Interval

Parameter

Estimate

Standard Error

Lower

Upper

m

333.643

4.09445

325.618

341.668

a

2.35868

0.0233789

2.31286

2.40451

b

0.101279

0.00218984

0.0969873

0.105571


Analysis of Variance

Source

Sum of Squares

Df

Mean Square

Model

3.22511E7

3

1.07504E7

Residual

245846.

1077

228.269

Total

3.24969E7

1080


Total (Corr.)

7.37714E6

1079



R-Squared = 96.6675 percent

R-Squared (adjusted for d.f.) = 96.6613 percent Standard Error of Est. = 15.1086

Mean absolute error = 12.5891 Durbin-Watson statistic = 0.456049

Lag 1 residual autocorrelation = 0.771676


Residual Analysis


Estimation

Validation

n

1080


MSE

228.269


MAE

12.5891


MAPE

14.2699


ME

-0.487939


MPE

-6.82747



The StatAdvisor

The output shows the results of fitting a nonlinear regression model to describe the relationship between Kg and 1 independent variables. The equation of the fitted model is


Kg = 333.643*exp(-2.35868*exp(-0.101279*Thang))


In performing the fit, the estimation process terminated successully after 6 iterations, at which point the estimated coefficients appeared to converge to the current estimates.


The R-Squared statistic indicates that the model as fitted explains 96.6675% of the variability in Kg. The adjusted R- Squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 96.6613%. The standard error of the estimate shows the standard deviation of the residuals to be 15.1086. This value can be used to construct prediction limits for new observations by selecting the Forecasts option from the text menu. The mean absolute error (MAE) of 12.5891 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the



residuals to determine if there is any significant correlation based on the order in which they occur in your data file.


The output also shows aymptotic 95.0% confidence intervals for each of the unknown parameters. These intervals are approximate and most accurate for large sample sizes. You can determine whether or not an estimate is statistically significant by examining each interval to see whether it contains the value 0. Intervals covering 0 correspond to coefficients which may well be removed form the model without hurting the fit substantially.


Plot of Fitted Model


400


300


Kg

200


100


0


0 3 6 9 12 15 18 21 24 Thang Nonlinear Regression F1 Char × LS NNH Dependent variable Kg 9

0 3 6 9 12 15 18 21 24

Thang



Nonlinear Regression - F1 (Char × LS) NNH

Dependent variable: Kg Independent variables:

Thang


Function to be estimated: m*exp(-a*exp(-b*Thang)) Initial parameter estimates:

m = 100.0

a = 1.0

b = 0.1


Estimation method: Marquardt

Estimation stopped due to convergence of residual sum of squares. Number of iterations: 6

Number of function calls: 28


Estimation Results




Asymptotic

95.0%



Asymptotic

Confidence

Interval

Parameter

Estimate

Standard Error

Lower

Upper

m

383.999

4.98571

374.227

393.771

a

2.43216

0.0210278

2.39095

2.47337

b

0.0953172

0.00199682

0.0914035

0.0992309


Analysis of Variance

Source

Sum of Squares

Df

Mean Square

Model

4.03042E7

3

1.34347E7

Residual

282320.

1137

248.302

Total

4.05865E7

1140


Total (Corr.)

9.57182E6

1139



R-Squared = 97.0505 percent

R-Squared (adjusted for d.f.) = 97.0453 percent Standard Error of Est. = 15.7576

Mean absolute error = 13.1394 Durbin-Watson statistic = 0.377343

Lag 1 residual autocorrelation = 0.810484


Residual Analysis


Estimation

Validation

n

1140


MSE

248.302


MAE

13.1394


MAPE

14.779


ME

-0.52582


MPE

-7.35733



The StatAdvisor

The output shows the results of fitting a nonlinear regression model to describe the relationship between Kg and 1 independent variables. The equation of the fitted model is


Kg = 383.999*exp(-2.43216*exp(-0.0953172*Thang))


In performing the fit, the estimation process terminated successully after 6 iterations, at which point the estimated coefficients appeared to converge to the current estimates.


The R-Squared statistic indicates that the model as fitted explains 97.0505% of the variability in Kg. The adjusted R- Squared statistic, which is more suitable for comparing models with different numbers of independent variables, is 97.0453%. The standard error of the estimate shows the standard deviation of the residuals to be 15.7576. This value can be used to construct prediction limits for new observations by selecting the Forecasts option from the text menu. The mean absolute error (MAE) of 13.1394 is the average value of the residuals. The Durbin-Watson (DW) statistic tests the

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 10/11/2022