Đặc điểm lâm học và sinh thái quần thể loài thông 5 lá Pinus dalatensis Ferré ở Tây Nguyên - 20


69. Trần Đức Trọng, Trần Xuân Phước, Võ Thành Tám, Phan Thanh Tuấn, Trịnh Duy Hải, Lê Văn Huy, Phạm Quang Phong, Bảo Huy (2019), Thẩm định các phương pháp tạo cây Thuỷ tùng (Glyptostrobus pencilis (Taunton ex D. Don) K. Kock). tạp chí Khoa học Lâm nghiệp số 3(2019): 110-120.

70. Phùng Đình Trung, Trần Lâm Đồng, Phạm Quang Tuyến, Ninh Viết Khương, Nguyễn Thị Thu Phương và Trần Hoàng Quí (2016), Đặc điểm cấu trúc và đa dạng sinh học tầng cây gỗ rừng phục hồi sau khai thác tại Khu bảo tồn thiên nhiên văn hoá Đồng Nai. Tạp chí Khoa học Lâm Nghiệp, số 4/2017.

71. Thái Văn Trừng (1978), Thảm thực vật rừng Việt Nam. Nhà xuất bản Khoa học và Kỹ thuật, 276tr.

72. Thái Văn Trừng (1999), Những hệ sinh thái rừng nhiệt đới ở Việt Nam. Nhà xuất bản Khoa học và Kỹ thuật.

73. Nguyễn Văn Trương (1973), Phương pháp thống kê cây đứng trong rừng hỗn loại. Nxb, Khoa học và Kỹ thuật, Hà Nội, 171tr.

74. Nguyễn Văn Trương (1983), Quy luật cấu trúc rừng hỗn loại. Nxb, Khoa học và Kỹ thuật, Hà Nội, 107tr.

75. Nguyễn Hải Tuất (1990), Quá trình Poisson và ứng dụng trong nghiên cứu cấu trúc quần thể rừng. Thông tin khoa học kỹ thuật, Đại học Lâm nghiệp, số 1(1990): 1-7.

76. Nguyễn Hải Tuất, Vũ Tiến Hinh và Ngô Kim Khôi (2006), Phân tích thống kê trong lâm nghiệp. Nhà xuất bản Nông Nghiệp.

77. Phạm Quang Tuyến, Bùi Thanh Hằng, Trần Hoàng Quí, Nguyễn Thị Thu Phương, Nguyễn Kim Trung, Nguyễn Quang Hưng (2016), Nghiên cứu lập biểu thể tích Thông 3 lá (Pinus kesiya) ở Hà Giang. Tạp chí Khoa học Lâm nghiệp, số 4/2016.

Có thể bạn quan tâm!

Xem toàn bộ 184 trang tài liệu này.

78. UBND tỉnh Lâm Đồng (2019), Quyết định số 1485/QĐ-UBND ngày 10 tháng 7 năm 2019 về việc điều chỉnh phạm vi, ranh giới, diện tích đất lâm nghiệp và cơ cấu 3 loại rừng giao Vườn quốc gia Bidoup - Núi Bà quản lý.


Đặc điểm lâm học và sinh thái quần thể loài thông 5 lá Pinus dalatensis Ferré ở Tây Nguyên - 20

79. Lê Văn Vinh (2013), Nghiên cứu đặc điểm tái sinh Thông 5 lá (P. dalatensis Ferré) tại Vườn Quốc gia Kon Ka Kinh tỉnh Gia Lai. Luận văn Thạc sĩ, Trường Đại học Nông Lâm Tp. Hồ Chí Minh.

80. Wratten, S.D. and Fry, G.L.A. (1986), Thực nghiệm sinh thái học (Người dịch: Mai Đình Viên, Lê Huy Hoàng và Nguyễn Viết Tùng). Nhà xuất bản Khoa học và Kỹ thuật, Hà Nội, 159tr.

Tiếng Nước ngoài

81. Akaike, H. (1973), Information theory as an extension of the maximum likelihood principle. In: Petrov, B.N., Csaki, F.E. (Eds.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp. 267–281

82. Archontoulis, S.V., and Miguez. F.E. (2015), Nonlinear Regression Models and Applications in Agricultural Research. Agronomy Journal, 107(2): 786-798

83. Aronoff, S. (1989), Geographic information systems: A management perspective,

Geocarto International, 4:4, 58-58, doi:10.1080/10106048909354237.

84. Averyanov, L.V, Nguyen, T.H., Nguyen, S.K., Pham, T.V., Lamxay, V., Buonphanmy, S., Lorphengsy, S., Phan, K.L., Lanorsavanh, S. and Chantthanvongsa, K. (2014), Gymnospess of Laos. Nordic Journal of Botany 000: 001–041, 2014 doi: 10.1111/njb.00498.

85. Baker, P.J., Buny., S.Y., Vejchewin, A., Oliver, C.D., and Ashton, P.S. (2005), Distubance history and historical stand dynamics od a seasonal tropical forest in Western Thailand. Ecological Monographs, 75(3), pp. 317–343.

86. Balley. D. (1973), Quantifying diameter distribution with the Weibull function, Forest science 21-1973, pp. 427- 431.

87. Barbosa, A.C.M., Pereira, G.A., Souza, D.G., Santos, R.M. and Fontes, M.A.L. (2018), Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Australian Journal of Botany, 66, pp. 414–427 doi.org/10.1071/BT17212.

88. Bebber, D.P., Thomas, S.C., Cole, W.G., Balsillie, D. (2004), Diameter increment in mature eastern white pine Pinus strobus L. following partial harvest


of old-growth stands in Ontario, Canada. Trees (2004) 18: pp. 29–34; doi: 10.1007/s00468-003-0274-y.

89. Biondi, F. (1999), Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecology Application, 9(1), pp. 216-227.

90. Buckley, B.M., Barbetti, M., Watanasak. M., D'Arrigo. R., Saran Boonchirdchoo. S., and Sarutanon. S. (1995), Dendrochronological investigations in Thailand. IAWA Journal, Vol. 16 (4), pp. 393-409.

91. Buckley, B.M., Anchukaitis, K.J., Penny, D., Fletcher, R., Cook, E.R., Sano, M., Nam, L.C., Wichienkeeo, A., Minh, T.T., and Hong, T.M. (2010), Climate as a contributing factor in the demise of Angkor, Cambodia. Proceedings of the National Academy of Sciences, 107(15), pp. 6748-6752.

92. Buckley, B.M., Stahle, D.K., Luu, H.T., Wang, S.Y.S., Trung, N.Q., Thomas, P., Nam, L.C., Ton, T.M., Bui, T.H., Nguyen, V.T. (2017), Central Vietnam climate over the past five centuries from cypress tree rings. Climate Dynamics, 48(11- 12), pp. 3707-3723.

93. Bueno, S., and Bevilacqua, E. (2009), Modeling stem increment in individual Pinus occidentalis Sw. Trees in La Sierra, Dominican Republic. Forest Systems 2010 19(2): 170-183.

94. Businsky, R. (1999), Study of Pinus dalatensis Ferré and of the enigmatic “Pin du Moyen Annam”. Candollea, 54: 125-143.

95. Businsky, R. (2004), A Revision of the Asian Pinus Subsection Strobus (Pinaceae). Willdenowia, 34, pp. 209-257.

96. Businsky, R. (2010), A new species of soft pine from the Vietnamese border of Laos. Acta Pruhoniciana, 96, pp. 5-13.

97. Campbell, J. E, Jeremie C. M., Richard, A. N., Jerald L. S. (2008), Comparison of regression coefficient and GIS-based methodologies for regional estimates of forest soil carbon stocks. Environmental Pollution, 96, pp. 267-273.


98. Clark, P.J., and F.C. Evans. (1954), Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology, Vol. 35, No. 4, pp. 445-453.

99. Cook, E. R. (1985), A time series analysis approach to tree ring standardization, A Dissertation of Ph.D., The University of Arizona, the US.

100. Cook, E.R, Johnson, H.A., Blasing, J.T. (1987), Forest decline: Modeling the effect of climate in tree ring. Tree Physiology, 3 (1), pp. 27-40.

101. Curtis, J. T. and McIntosh, R. P. (1950), The Interrelations of Certain Analytic and Synthetic Phytosociological Characters. Ecology, 31(3), pp. 434-455.

102. Duncan, R.P. (1989), An evaluation of erros in tree age estiamtes based on increment cores in Kahikatea (Dacrycarpus dacrydioides). New Zealand Natural Sciences, 16, pp. 31-37.

103. Dymond, S.F., D'Amato, A.W., Kolka, R., Bolstad, P.V., Sebestyen, S., Bradford, J.B. (2016), Growth-climate relationships across topographic gradients in the northern Great Lakes. Ecohydrology 9(6), pp. 918-929.

104. Farjon, A. (2002), Rare and possibly threatened conifers in Vietnam. Report for the Fauna and Flora International (FFI) Global Trees Campaign & FFI Vietnam Programme.

105. Felfili, J.M. (1997), Diameter and height distributions in a gallery forest tree community and some of its main species in central Brazil over a six-year period (1985-1991). Revta Brasil. Bot., São Paulo, V.20, n.2, p.155-162.

106. Franklin, SE. (2001), Remote Sensing for Sustainable Forest Management.

Lewis Publishers.

107. Fritts, H.C. (1976), Tree rings and Climate. Academic Press, Elsevier, 582 pp.

108. Fritts, H.C. (1987), Tree rings and Climate, Volume one. Reprinted by courtesy of Academic Press, Elsevier, 245 pp.

109. Hansen, K.G., Buckley, B.M., Zottoli, B., D’Arrigo, R.D., Nam, L.C., Van Truong, V., Nguyen, D.T. and Nguyen, H.X. (2017), Discrete seasonal hydroclimate reconstructions over northern Vietnam for the past three and a half centuries. Climatic Change, 145(1-2), pp.177-188.


110. Hiep, N.T., Loc, P.K., Luu, N.D.T., Thomas, P.I., Farjon, A., Averyanov, L., Regalado, J. (2004), Vietnam Conifers Conservation status review 2004. Fauna & Flora International, Vietnam Programme, Hanoi, 158p.‌

111. Hilt, D.E. (1983), Individual tree diameter growth model for managed, even- aged, upland oak stands. Res. Pap. NE-533. Broomall, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station; 15 pp.

112. Holmes, R.l. (1983), Computer assisted quality control in tree ring dating and measurement. Tree ring Bulletein, 43, pp. 69-78.

113. Huy, B., Kralicek, K., Poudel, K.P., Phương, V.T., Khoa, P.V., Hung, N.D., Temesgen, H. (2016a), Allometric Equations for Estimating Tree Aboveground Biomass in Evergreen Broadleaf Forests of Viet Nam. Forest Ecology and Management, 382(2016), pp. 193-205.

114. Huy, B., Poudel, K.P., Kralicek, K., Hung, N.D., Khoa, P.V., Phương, V.T., and Temesgen, H. (2016b), Allometric Equations for Estimating Tree Aboveground Biomass in Tropical Dipterocarp Forests of Viet Nam. Forests, 7 (180), pp.1- 19; doi: 10.3390/f7080180

115. Huy, B., Poudel, K.P., Temesgen, H. (2016c), Aboveground biomass equations for evergreen broadleaf forests in South Central Coastal ecoregion of Viet Nam: Selection of eco-regional or pantropical models. Forest Ecology and Management, 376(2016), pp. 276-283. http://dx.doi.org/10.1016/j.foreco.2016.06.031

116. Huy, B., Tri, P.C., Triet, T. (2018), Assessment of enrichment planting of teak (Tectona grandis) in degraded dry deciduous dipterocarp forest in the Central Highlands, Vietnam. Southern Forests: A Journal of Forest Science, 80:1, pp. 75-84, DOI: 10.2989/20702620.2017.1286560.

117. Huy, B., Tinh, N.T., Poudel, K.P., Frank, B.M., Temesgen, H. (2019), Taxon- specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. Forest Ecology and Management, 437(2019), pp. 156-174.


118. IUCN, (2019) The IUCN Red list of Threatened Species. Available at https://www.iucnredlist.org/, access on Dec. 30 2019.

119. Jacoby, G., and R. D’Arrigo. (1990), Teak (Tectona grandis L. f.), a tropical species of large-scale dendroclimatic potential. Dendrochronologia, 8:83–98.

120. Jayaraman, K. (1999), A Statistical Manual for Forestry Research. FAO, Bangkok. Thailand.

121. Johnson, S.E. and Abrams, M.D. (2009), Basal area increment trends across age classes for two long-lived tree speciesin the eartern U.S. TRACE – Tree Rings Archeology, Climatology and Ecology - Vol. 7. GFZ Posdam, Scientifict technical Report STR 09/03, Posdam, 226 pp.

122. Kamo, K., Vacharangkura, T., Tiyanon, S., Viriyabuncha, C., Nimpila, S. and Doangsrisen, B. (2002), Plant Species Diversity in Tropical Planted Forest and Implication for Restoration of Forest Ecosystems in Sakaerat, Northearstern Thailand - http://www.jircas.affrc.go.jp

123. Keeley, J.E. (2012), Ecology and evolution of pine life histories. Annals of Forest Science. Published online on 09 May 2012. DOI 10.1007/s13595-012- 0201-8.

124. Kohavi, R. (1995), A study of cross-validation and bootstrap for accuracy estimation and model selection. The International Joint Conference on Artificial Intelligence (IJCAI), 1995. http://robotics.stanford.edu/~ronnyk.

125. Laar, A.V., Akca, A. (2007), Forest Mansuration. Springer, Netherland. ISBN- 13 978-1-4020-5991-9 (ebook).

126. Lamb, D., Erskine, D.P., Parrotta A.J. (2005), Restoration of Degraded Tropical Forest Landscapes - http://www.sciencemag.org.

127. Lee, W.K., Gadowb, K.V., Chung, D.J., Lee, J.L., Shin, M.Y. (2004), DBH growth model for Pinus densiflora and Quercus variabilis mixed forests in central Korea. Ecological Modelling 176 (2004): pp. 187–200.

128. Lieth, H., Mooney, H.A. (1991), Restoration of Tropical Forest Ecosystems.

Springer – Science + Business Media, B.V. http://link.springer.com.


129. Loc, P.K., The, P.V., Long, P.K., Regalado, J., Averyanov, L.V., Maslin, B. (2017), Native conifers of Vietnam – A Review. Pakistan Journal of Botany, 49(5): 2037 - 2068

130. Luo, J., Zhang, M., Zhou, X., Chen, J., and Tian, Y. (2018), Tree Height and DBH Growth Model Establishment of Main Tree Species in Wuling Mountain Small Watershed. Earth and Environmental Science 108 (2018) 042003; doi

:10.1088/1755-1315/108/4/042003

131. Ma, W., and Lei, X. (2015), Nonlinear Simultaneous Equations for Individual- Tree Diameter Growth and Mortality Model of Natural Mongolian Oak Forests in Northeast China. Forests 2015, 6, pp. 2261-2280; doi:10.3390/f6062261

132. Mallows, C.L. (1973), Some comments on CP. Technometrics 15 (4): pp. 661- 675. Doi:10.2307/1267380. JSTOR 1267380.

133. Martins, F.B., Soares, C.P.B., da Silva, G.F. (2014), Individual tree growth models for eucalyptus in northern Brazil. Sci. Agric. 71(3): 212-225.

134. Matias, L., Jum, A.S. (2012), Interactions between growth, demography and biotic interactions in determining species range lomist in a warming world: The case of Pinus sylvestric. Forest Ecology and Management, 282(2012):10-22.

135. Narayan, C., and Anshumali (2015), Diversity indices and importance values of a tropical deciduous forest of Chhotanagpur plateau, India. Journal of Biodiversity and Environmental Sciences, 7(1): 358 – 367.

136. Pastur, G.J.M, Cellini, J.M., Lencinas, M.V., Peri, P.L. (2008), Stand growth model using volume increment/basal area ratios. Journal of Forest Science, 54, 2008 (3): 102–108.

137. Phong, D.T., Hien, V.T.T., Lieu, T.T., Hiep, N.T. (2017), Genetic diversity in the natural populations of Pinus dalatensis Ferré (Pinaceae) assessed by SSR markers. Journal of Science and Technology, 54 (2) (2016) 178-189.

138. Picard, N., Saint-André L., Henry M. (2012), Manual for building tree volume and biomass allometric equations: from field measurement to prediction. Food and Agricultural Organization of the United Nations, Rome, and Centre de


Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, 215 pp.

139. Pinheiro, J., Bates, D., Debroy, S., Sarkar, D., Team, R.C. (2014), Nlme: linear and nolinear mixed effects models. R package version 3.1-117.

140. Pumijumnong, N., Eckstein, D., & Sass, U. (1995), Tree-Ring Research on Tectona Grandis in Northern Thailand. IAWA Journal, 16(4), pp. 385– 392. doi:10.1163/22941932-90001428

141. Racz, I., and Huyen, D.D. (2007), Study of low-elevation occurrence of Pinus dalatensis Ferré (Pinaceae) in Gia lai Province, Vietnam. Studia bot. hung. 38, pp. 133–142, 2007.

142. Richard, S. A., Safiya, S., Scott, S.E., Howard, K.B. (2004), Breeding and Genetic Resources of Five-Needle Pines: Growth, Adaptability, and Pest Resistance, 2001. Proceedings of the IUFRO Five-Needle Pines Working Party

Conference July 23-27, 2001. Medford, Oregon, USA.

143. Rollet, B. (1971), La regeneracion natural en bosque denso siempreverde de llanura de la Guayana venezolana. Bol. Inst. For. Lat.-Amer. Inv. Cap. 35: 39- 73.

144. Sano, M., Buckley, B.M. and Sweda, T. (2009), Tree-ring based hydroclimate reconstruction over northern Vietnam from Fokienia hodginsii: eighteenth century mega-drought and tropical Pacific influence. Climate dynamics, 33(2- 3), p.331.

145. Sedmak, R. and Scheer, L. (2012), Modelling of tree diameter growth using growth functions parameterised by least squares and Bayesian methods. Journal of Forest Science, 58, 2012 (6): pp. 245–252.

146. Speer, J.H.m Clay, K., Bishop, G. and Creech, M. (2010), The Effect of Periodical Cicadas on Growth of five Trees Species in Midwestern Deciduous Forest. The American Midland Naturalist, 164: pp. 173-186.

Xem tất cả 184 trang.

Ngày đăng: 26/01/2024
Trang chủ Tài liệu miễn phí