Ảnh hưởng của thu nhập phi truyền thống đến khả năng sinh lời và rủi ro của các ngân hàng ở Việt Nam trong giai đoạn 2005-2013 - 13


Collinearity Diagnostics


SQRT R-

Variable VIF VIF Tolerance Squared

---------------------------------------------------- lnsize 4.87 2.21 0.2054 0.7946

nim 1.37 1.17 0.7314 0.2686

lta 1.19 1.09 0.8435 0.1565

eta 1.78 1.33 0.5618 0.4382

cir 1.05 1.03 0.9481 0.0519

gdp 1.28 1.13 0.7793 0.2207

lnnon 4.51 2.12 0.2216 0.7784

---------------------------------------------------- Mean VIF 2.29


Cond

Eigenval Index

---------------------------------

1

6.0911

1.0000

2

0.9954

2.4737

3

0.4828

3.5520

4

0.2832

4.6376

5

0.1024

7.7120

6

0.0374

12.7689

7

0.0066

30.4174

8

0.0011

73.0061

Có thể bạn quan tâm!

Xem toàn bộ 118 trang tài liệu này.

Ảnh hưởng của thu nhập phi truyền thống đến khả năng sinh lời và rủi ro của các ngân hàng ở Việt Nam trong giai đoạn 2005-2013 - 13

---------------------------------

Condition Number 73.0061

Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) Det(correlation matrix) 0.0800


.

Kiểm định phương sai sai số thay đổi

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model


H0: sigma(i)^2 = sigma^2 for al i



chi2 (40) =

12514.43

Prob>chi2 =

0.5412


Kiểm định tự tương quan của phần dư


Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation

F( 1, 36) = 3.534

Prob > F = 0.0682

Phụ lục 3

Mô hình Pooling OLS



Source

SS

df

MS

Model

.366234208

7

.052319173

Residual

.491038188

238

.002063186

Total

.857272396

245

.003499071

Number of obs

=

246

F( 7, 238)

=

25.36

Prob > F

=

0.0000

R-squared

=

0.4272

Adj R-squared

=

0.4104

Root MSE

=

.04542


roe

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

lnsize

-.0005843

.0038275

-0.15

0.879

-.0081245

.0069559

nim

2.130302

.26372

8.08

0.000

1.610779

2.649826

lta

-.6739541

1.163781

-0.58

0.563

-2.96658

1.618672

eta

-24.35042

3.972267

-6.13

0.000

-32.17571

-16.52513

cir

.3533858

.3990964

0.89

0.377

-.4328267

1.139598

gdp

107.7699

25.72513

4.19

0.000

57.09186

158.4479

lnnon

.0123061

.0026634

4.62

0.000

.0070593

.0175529

_cons

-.1248417

.0566103

-2.21

0.028

-.2363629

-.0133205


.


Mô hình REM



Random-effects GLS regression


Number of obs


=


246

Group variable: code

Number of groups

=

40

R-sq: within = 0.1421

Obs per group: min

=

2

between = 0.6197

avg

=

6.2

overall = 0.4149

max

=

9


Wald chi2(7)

=

91.84

corr(u_i, X) = 0 (assumed)

Prob > chi2

=

0.0000



roe

Coef.

Std. Err.


z P>|z|


[95% Conf.

Interval]

lnsize

.0017913

.0041251


0.43 0.664


-.0062938

.0098763

nim

1.641639

.2726193


6.02 0.000


1.107315

2.175963

lta

.3402581

1.234672


0.28 0.783


-2.079655

2.760171

eta

-20.27894

4.024733


-5.04 0.000


-28.16727

-12.3906

cir

-.3452688

.4815135


-0.72 0.473


-1.289018

.5984804

gdp

102.9646

25.43395


4.05 0.000


53.11498

152.8142

lnnon

.0087438

.0026622


3.28 0.001


.0035259

.0139616

_cons

-.1164649

.0660718


-1.76 0.078


-.2459633

.0130335

sigma_u

.02210333







sigma_e

.03920294







rho

.24121182

(fraction

of

variance due

to

u_i)



.



Breusch and Pagan Lagrangian multiplier test for random effects


roe[code,t] = Xb + u[code] + e[code,t]


Estimated results:

Var sd = sqrt(Var)


roe .0034991 .0591529

e .0015369 .0392029

u .0004886 .0221033


Test: Var(u) = 0


M.ô hình FEM

chibar2(01) = 19.22

Prob > chibar2 = 0.0000


Fixed-effects (within) regression

Number of obs

=

246

Group variable: code

Number of groups

=

40

R-sq: within

=

0.1552

Obs

per

group:

min

=

2

between

=

0.4916




avg

=

6.2

overall

=

0.3485




max

=

9




F(7,199)

=

5.22

corr(u_i, Xb)

=

0.2664

Prob > F

=

0.0000



roe

Coef.

Std. Err.


t P>|t|


[95% Conf.

Interval]

lnsize

-.0001558

.0048493


-0.03 0.974


-.0097184

.0094067

nim

1.061353

.3080369

3.45 0.001

.4539172

1.668788

lta

1.448683

1.405181

1.03 0.304

-1.322272

4.219639

eta

-17.26883

4.295509

-4.02 0.000

-25.73939

-8.798273

cir

-1.113798

.6135187

-1.82 0.071

-2.32363

.0960345

gdp

79.31969

29.27231

2.71 0.007

21.59598

137.0434

lnnon

.0059413

.0028869

2.06 0.041

.0002483

.0116342

_cons

-.0246669

.0867467

-0.28 0.776

-.1957277

.1463939

sigma_u

.03538221







sigma_e

.03920294






rho

.4489076

(fraction

of

variance due

to

u_i)

F test that all u_i=0: F(39, 199) = 3.09 Prob > F = 0.0000


.



Note: the rank of the differenced variance matrix (5) does not equal the number of coefficients being tested (7); be sure this is what you expect, or there may be problems computing the test.

Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.


Coefficients


(b) fixed

(B)

random

(b-B)

Difference

sqrt(diag(V_b-V_B)) S.E.

lnsize

-.0001558

.0017913

-.0019471

.0025493

nim

1.061353

1.641639

-.5802859

.1434066

lta

1.448683

.3402581

1.108425

.6709076

eta

-17.26883

-20.27894

3.010107

1.500972

cir

-1.113798

-.3452688

-.7685288

.3801972

gdp

79.31969

102.9646

-23.64491

14.49076

lnnon

.0059413

.0087438

-.0028025

.0011167

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg


Test: Ho: difference in coefficients not systematic


chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 22.14

Prob>chi2 = 0.0005

(V_b-V_B is not positive definite)

.

Tự tương quan của phần dư


Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation

F( 1, 36) = 11.721

Prob > F = 0.0016

Kiểm định phương sai sai số thay đổi

Modified Wald test for groupwise heteroskedasticity in fixed effect regression model

H0: sigma(i)^2 = sigma^2 for all i

chi2 (40) = 36795.99

Prob>chi2 = 0.0000

.

Phụ lục 4

Source

SS

df

MS

Model

.125358843

7

.017908406

Residual

.131009267

238

.000550459

Total

.256368109

245

.0010464

Mô hình hồi quy theo biến SDROA Mô hình Pooling OLS


sdroa

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

lnsize

-.0083671

.001977

-4.23

0.000

-.0122618

-.0044724

nim

1.445566

.1362186

10.61

0.000

1.177218

1.713914

lta

-.2227387

.6011246

-0.37

0.711

-1.406943

.9614657

eta

8.548848

2.051785

4.17

0.000

4.506871

12.59083

cir

.6355336

.2061442

3.08

0.002

.2294333

1.041634

gdp

48.58042

13.28774

3.66

0.000

22.40382

74.75701

lnnon

.0098924

.0013757

7.19

0.000

.0071823

.0126025

_cons

.0490729

.0292408

1.68

0.095

-.0085309

.1066766

Mô hình REM

Number of obs = 246

F( 7, 238) = 32.53

Prob > F = 0.0000

R-squared

=

0.4890

Adj R-squared

=

0.4739

Root MSE

=

.02346


Random-effects GLS regression

Number of obs

=

275

Group variable: code

Number of groups

=

40

R-sq: within

=

0.3600

Obs

per

group:

min

=

2

between

=

0.3133




avg

=

6.9

overall

=

0.3491




max

=

9




Wald chi2(6)

=

146.09

corr(u_i, X)

=

0 (assumed)

Prob > chi2

=

0.0000



sdroa

Coef.

Std. Err.


z P>|z|


[95% Conf.

Interval]

lnsize

.0005293

.0015783


0.34 0.737


-.0025642

.0036228

nim

1.100125

.1232902

8.92 0.000

.858481

1.34177

lta

1.082388

.6561784

1.65 0.099

-.2036983

2.368474

eta

5.043126

1.70769

2.95 0.003

1.696115

8.390136

cir

1.186046

.2736687

4.33 0.000

.6496655

1.722427

gdp

55.24661

13.79031

4.01 0.000

28.2181

82.27512

_cons

.0174564

.0345579

0.51 0.613

-.0502759

.0851886

sigma_u

.01395177







sigma_e

.02133582






rho

.2995248

(fraction

of

variance due

to

u_i)



Breusch and Pagan Lagrangian multiplier test for random effects


sdroa[code,t] = Xb + u[code] + e[code,t]


Estimated results:

Var sd = sqrt(Var)


sdroa .0010985 .0331438

e .0004552 .0213358

u .0001947 .0139518


Test: Var(u) = 0


Mô hình FEM

chibar2(01) = 34.75

Prob > chibar2 = 0.0000

Fixed-effects (within) regression Number of obs = 275

Group variable: code Number of groups = 40


R-sq: within = 0.3837 Obs per group: min = 2

between = 0.1372 avg = 6.9

overall = 0.2535 max = 9


F(6,229) = 23.76

corr(u_i, Xb) = -0.2368 Prob > F = 0.0000



sdroa

Coef.

Std. Err.


t P>|t|


[95% Conf.

Interval]

lnsize

-.0012422

.0019135


-0.65 0.517


-.0050124

.0025281

nim

1.00023

.1301253

7.69 0.000

.7438343

1.256626

lta

1.145693

.7055032

1.62 0.106

-.2444145

2.5358

eta

4.278441

1.738839

2.46 0.015

.8522724

7.70461

cir

2.021628

.325952

6.20 0.000

1.37938

2.663876

gdp

52.01907

15.14954

3.43 0.001

22.16876

81.86938

_cons

.0540468

.0417874

1.29 0.197

-.0282901

.1363838

sigma_u

.02303646







sigma_e

.02133582






rho

.5382705

(fraction

of

variance due

to

u_i)

F test that all u_i=0: F(39, 229) = 4.50 Prob > F = 0.0000


.



. hausman fixed random


Coefficients


(b) fixed

(B)

random

(b-B)

Difference

sqrt(diag(V_b-V_B)) S.E.

lnsize

-.0012422

.0005293

-.0017715

.0010818

nim

1.00023

1.100125

-.0998951

.0416187

lta

1.145693

1.082388

.0633052

.2591615

eta

4.278441

5.043126

-.7646846

.3276532

cir

2.021628

1.186046

.8355817

.1770598

gdp

52.01907

55.24661

-3.227543

6.27184

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg


Test: Ho: difference in coefficients not systematic


chi2(6) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 41.89

Prob>chi2 = 0.0000

(V_b-V_B is not positive definite)


Kiểm định đa cộng tuyến


Collinearity Diagnostics


SQRT R-

Variable VIF VIF Tolerance Squared

---------------------------------------------------- lnsize 2.02 1.42 0.4938 0.5062

nim 1.20 1.10 0.830 8 0.1692

lta 1.14 1.07 0.8748 0.1252

eta 1.71 1.31 0.5857 0.4143

cir 1.04 1.02 0.9633 0.0367

gdp 1.30 1.14 0.7676 0.2324

---------------------------------------------------- Mean VIF 1.40


Cond

Eigenval Index

---- -----------------------------

1

5.0552

1.0000

2

0.9893

2.2604

3

0.5302

3.0878

4

0.2645

4.3721

5

0.1334

6.1564

6

0.0256

14.0543

7

0.0019

51.9155

---------------------------------

Condition Number 51.9155

Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) Det(correlation matrix) 0.3712


.


Modified Wald test for groupwise heteroskedasticity in fixed effect regression model


H0: sigma(i)^2 = sigma^2 for all i


chi2 (40) = 5.1e+30

Prob>chi2 = 0.9650


.

Kiểm định tự tương quan của phần dư


. xtserial sdroa lnsize nim lta eta cir gdp


Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation

F( 1, 38) = 1.375

Prob > F = 0.2482

.

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 01/06/2022