Ảnh hưởng của thu nhập phi truyền thống đến khả năng sinh lời và rủi ro của các ngân hàng ở Việt Nam trong giai đoạn 2005-2013 - 14

Phụ lục 5

Source

SS

df

MS

Model

.316497733

6

.052749622

Residual

.466940033

268

.001742314

Total

.783437765

274

.002859262

Có thể bạn quan tâm!

Xem toàn bộ 118 trang tài liệu này.

Ảnh hưởng của thu nhập phi truyền thống đến khả năng sinh lời và rủi ro của các ngân hàng ở Việt Nam trong giai đoạn 2005-2013 - 14

Mô hình hồi quy theo biến SDROE Mô hình Pooling OLS


Number of obs = 275

F( 6, 268) = 30.28

Prob > F = 0.0000


R-squared

=

0.4040

Adj R-squared

=

0.3906

Root MSE

=

.04174



sdroe

Coef.

Std. Err.

t

P>|t|

[95% Conf.

Interval]

lnsize

.003758

.0020701

1.82

0.071

-.0003179

.0078338

nim

2.007018

.192024

10.45

0.000

1.628951

2.385086

lta

1.530474

.9986223

1.53

0.127

-.4356684

3.496617

eta

8.543595

2.787823

3.06

0.002

3.054776

14.03241

cir

-.5494936

.3569046

-1.54

0.125

-1.252187

.1531999

gdp

97.00734

22.51403

4.31

0.000

52.68047

141.3342

_cons

.1139788

.046323

2.46

0.015

.0227756

.205182



M.ô hình REM



Random-effects GLS regression


Number of obs


=


275

Group vari able: code

Number of groups

=

40

R-sq: within = 0.3088

Obs per group: min

=

2

between = 0.4794

avg

=

6.9

overall = 0.3973

max

=

9


Wald chi2(6)

=

139.18

corr(u_i, X) = 0 (assumed)

Prob > chi2

=

0.0000



sdroe

Coef.

Std. Err.


z P>|z|


[95% Conf.

Interval]

lnsize

.0013964

.002547


0.55 0.583


-.0035955

.0063884

nim

1.815699

.2028142


8.95 0.000


1.418191

2.213208

lta

2.505335

1.076542


2.33 0.020


.3953509

4.615319

eta

6.86291

2.823835


2.43 0.015


1.328295

12.39753

cir

-.2801694

.4418543


-0.63 0.526


-1.146188

.5858491

gdp

96.92326

22.6625


4.28 0.000


52.50558

141.3409

_cons

.1599452

.0558197


2.87 0.004


.0505406

.2693498

sigma_u

.02122615







sigma_e

.03700614







rho

.24755422

(fraction

of

variance due

to

u_i)


Kiểm định LM


Breusch and Pagan Lagrangian multiplier test for random effects


sdroe[code,t] = Xb + u[code] + e[code,t]


Estimated results:

Var sd = sqrt(Var)


sdroe .0028593 .0534721

e .0013695 .0370061

u .0004505 .0212262


Test: Var(u) = 0

chibar2(01) = 18.85

Prob > chibar2 = 0.0000


Mô hình FEM



Fixed-effects (within) regression


Number of obs =


275

Group variable: code

Number of groups =

40

R-sq: within = 0.3153

Obs per group: min =

2

between = 0.4018

avg =

6.9

overall = 0.3717

max =

9


F(6,229) =

17.58

corr(u_i, Xb) = 0.1075

Prob > F =

0.0000


sdroe

Coef.

Std. Err.


t P>|t|


[95% Conf.

Interval]

lnsize

-.0009884

.0033188


-0.30 0.766


-.0075277

.0055509

nim

1.635686

.2256972


7.25 0.000


1.190977

2.080395

lta

3.532307

1.223668


2.89 0.004


1.12122

5.943393

eta

5.713021

3.015948


1.89 0.059


-.2295342

11.65558

cir

.0859825

.565351


0.15 0.879


-1.027972

1.199937

gdp

95.10219

26.27628


3.62 0.000


43.328

146.8764

_cons

.2059991

.0724786


2.84 0.005


.063189

.3488093

sigma_u

.02893278







sigma_e

.03700614







rho

.37937139

(fraction

of

variance due

to

u_i)


F test that all u_i=0: F(39, 229) = 2.87 Prob > F = 0.0000


more

Kiểm định Hausman


Note: the rank of the differenced variance matrix (5) does not equal the number of coefficients being tested (6); be sure this is what you expect, or there may be problems computing the test. Examine the output of your estimators for anything unexpected and possibly consider scaling your variables so that the coefficients are on a similar scale.


Coefficients


(b) fixed

(B)

random

(b-B)

Difference

sqrt(diag(V_b-V_B)) S.E.

lnsize

-.0009884

.0013964

-.0023848

.0021278

nim

1.635686

1.815699

-.180013

.0990235

lta

3.532307

2.505335

1.026971

.5817379

eta

5.713021

6.86291

-1.149889

1.059196

cir

.0859825

-.2801694

.3661519

.3526847

gdp

95.10219

96.92326

-1.821073

13.29865

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg


Test: Ho: difference in coefficients not systematic


chi2(5) = (b-B)'[(V_b-V_B)^(-1)](b-B)

= 10.75

Prob>chi2 = 0.0567

.

Kiểm định đa cộng tuyến

Collinearity Diagnostics


SQRT R-

Variable VIF VIF Tolerance Squared

---------------------------------------------------- lnsize 2.02 1.42 0.4938 0.5062

nim 1.20 1.10 0.8308 0.1692

lta 1.14 1.07 0.8748 0.1252

eta 1.71 1.31 0.5857 0.4143

cir 1.04 1.02 0.9633 0.0367

gdp 1.30 1.14 0.7676 0.2324

---------------------------------------------------- Mean VIF 1.40


Cond

Eigenval Index

---------------------------------

1

5.0552

1.0000

2

0.9893

2.2604

3

0.5302

3.0878

4

0.2645

4.3721

5

0.1334

6.1564

6

0.0256

14.0543

7

0.0019

51.9155

---------------------------------

Condition Number 51.9155

Eigenvalues & Cond Index computed from scaled raw sscp (w/ intercept) Det(correlation matrix) 0.3712


.

Kiểm định tự tương quan của phần dư


Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation

F( 1, 38) = 1.420

Prob > F = 0.2407

Breusch and Pagan Lagrangian multiplier test for random effects

sdroe[code,t] = Xb + u[code] + e[code,t]


Var sd = sqrt(Var

sdroe

.0028593

.0534721

e

.0013695

.0370061

u

.0004505

.0212262

Estimated results:

)



Test: Var(u) = 0


chibar2(01) = 18.85

Prob > chibar2 = 0.0000

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 01/06/2022