Nghiên cứu than hóa phụ phẩm nông nghiệp vỏ hạt cà phê, lõi bắp bằng phương pháp carbon hóa thủy nhiệt, ứng dụng làm vật liệu hấp phụ và xúc tác - 21

with KOH and H3PO4: kinetics, adsorption equilibrium and thermodynamic studies. Powder Technology, 2018, 339, 334-343.

118. B. Babinszki, Z. Sebestyén, et al., Effect of slow pyrolysis conditions on biocarbon yield and properties: Characterization of the volatiles. Bioresource Technology, 2021, 338, 125567.

119. B. H. Hameed, A. L. Ahmad, et al., Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments, 2007, 75(1), 143-149.

120. G. L. Miller, Use oi Dinitrosalicylic Acid Reagent tor Determination oi Reducing Sugar. Analytical chemistry, 1959, 31(3), 426-428.

121. H. P. Boehm, Surface oxides on carbon and their analysis: a critical assessment. Carbon, 2002, 40(2), 145-149.

122. H. Freundlich, ĩber die adsorption in lửsungen (adsorption in solution).

Zeitschrift fỹr Physikalische Chemie, 1906, 57, 385-470.

123. I. Langmuir, The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute, 1917, 183(1), 102-105.

124. S. Lagergren, Zur theorie der sogenannten adsorption geloster stoffe.

Kungliga svenska vetenskapsakademiens. Handlingar, 1898, 24, 1-39.

125. Y.-S. Ho and G. McKay, Sorption of dye from aqueous solution by peat.

Chemical engineering journal, 1998, 70(2), 115-124.

126. J. Binder and R. Raines, Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals. Journal of the American Chemical Society, 2009, 131, 1979-85.

127. S. Sharma, R. Kumar, et al., Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresource Technology, 2015, 175, 350-357.

128. S. Sharma, R. Kumar, et al., Pilot scale study on steam explosion and mass balance for higher sugar recovery from rice straw. Bioresour Technol, 2015, 175, 350-7.

129. S. Zhu, W. Huang, et al., Pretreatment of rice straw for ethanol production by a two-step process using dilute sulfuric acid and sulfomethylation reagent. Applied Energy, 2015, 154, 190-196.

130. Y. Xiong, Z. Zhang, et al., Hydrolysis of cellulose in ionic liquids catalyzed by a magnetically-recoverable solid acid catalyst. Chemical Engineering Journal, 2014, 235, 349-355.

131. S. Kumar and R. B. Gupta, Hydrolysis of Microcrystalline Cellulose in Subcritical and Supercritical Water in a Continuous Flow Reactor. Industrial & Engineering Chemistry Research, 2008, 47(23), 9321-9329.

132. B. B. Uzun, E. Apaydin-Varol, et al., Synthetic fuel production from tea waste: Characterisation of bio-oil and bio-char. Fuel, 2010, 89(1), 176-184.

133. M. T. Reza, Hydrothermal carbonization of lignocellulosic biomass. 2011, Thesis master, University of Nevada, Reno.

134. A. Arami Niya, F. Abnisa, et al., Optimization of synthesis and characterization of palm shell based bio char as a by product of biooil production process. BioResources, 2011, 7(1), 0246-0264.

135. M. Sain and S. Panthapulakkal, Bioprocess preparation of wheat straw fibers and their characterization. Industrial Crops and Products, 2006, 23(1), 1-8.

136. F. Yang, H. Xing, et al., Controllable and Eco-friendly Synthesis of P-Riched Carbon Quantum Dots and Its Application for Copper (II) ion Sensing. Vol. 448. 2018.

137. J. Pang, M. Zheng, et al., Catalytic conversion of concentrated miscanthus in water for ethylene glycol production. AIChE Journal, 2014, 60(6), 2254-2262.

138. B.-W. Lv, H. Xu, et al., Efficient adsorption of methylene blue on carboxylate- rich hydrochar prepared by one-step hydrothermal carbonization of bamboo and acrylic acid with ammonium persulphate. Journal of Hazardous Materials, 2022, 421, 126741.

139. H. Wang, Z. Xu, et al., Interconnected Carbon Nanosheets Derived from Hemp for Ultrafast Supercapacitors with High Energy. ACS Nano, 2013, 7(6), 5131-5141.

140. L. Wei, M. Sevilla, et al., Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for High-Performance Supercapacitor Electrodes. Vol. 1. 2011. 356.

141. C. Falco, J. P. Marco-Lozar, et al., Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon, 2013, 62, 346-355.

142. M. A. Khan, A. A. Alqadami, et al., Oil industry waste based non-magnetic and magnetic hydrochar to sequester potentially toxic post-transition metal ions from water. Journal of Hazardous Materials, 2020, 400, 123247.

143. A. H. Basta, V. Fierro, et al., 2-Steps KOH activation of rice straw: An efficient method for preparing high-performance activated carbons. Bioresource Technology, 2009, 100(17), 3941-3947.

144. D. W. McKee, Mechanisms of the alkali metal catalysed gasification of carbon. Fuel, 1983, 62(2), 170-175.

145. K. Y. Foo and B. H. Hameed, Preparation of activated carbon from date stones by microwave induced chemical activation: Application for methylene blue adsorption. Chemical Engineering Journal, 2011, 170(1), 338-341.

146. K. Y. Foo and B. H. Hameed, Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Bioresource Technology, 2011, 102(20), 9814-9817.

147. K. Y. Foo and B. H. Hameed, Preparation of oil palm (Elaeis) empty fruit bunch activated carbon by microwave-assisted KOH activation for the adsorption of methylene blue. Desalination, 2011, 275(1), 302-305.

148. A. H. Jawad, R. Razuan, et al., Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind

prepared via one-step liquid phase H2SO4 activation. Surfaces and Interfaces, 2019, 16, 76-84.

149. L. Zhou, Y. Shao, et al., Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction. ACS applied materials & interfaces, 2014a, 6(10), 7275-7285.

150. K. S. A. Sohaimi, N. Ngadi, et al., Synthesis, characterization and application of textile sludge biochars for oil removal. Journal of Environmental Chemical Engineering, 2017, 5(2), 1415-1422.

151. D. Pathania, S. Sharma, et al., Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 2017, 10, S1445-S1451.

152. L. Yan, P. R. Chang, et al., Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydrate polymers, 2012, 87(3), 1919-1924.

153. L. D. L. Miranda, C. R. Bellato, et al., Preparation and evaluation of hydrotalcite-iron oxide magnetic organocomposite intercalated with surfactants for cationic methylene blue dye removal. Chemical Engineering Journal, 2014, 254, 88-97.

154. M. Okamura, A. Takagaki, et al., Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 2006, 18(13), 3039-3045.

155. E. K. Guechi and O. Hamdaoui, Evaluation of potato peel as a novel adsorbent for the removal of Cu(II) from aqueous solutions: Equilibrium, kinetic and thermodynamic studies. Desalination and water treatment, 2015, 57.

156. H. Li, L. Liu, et al., High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism. RSC Advances, 2020, 10(24), 14262-14273.

157. S. A. Borghei, M. H. Zare, et al., Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode. Arabian Journal of Chemistry, 2021, 14(2), 102958.

158. B. H. Hameed, A. T. M. Din, et al., Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. Journal of Hazardous Materials, 2007, 141(3), 819-825.

159. M. Sabzevari, D. E. Cree, et al., Graphene Oxide–Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS Omega, 2018, 3(10), 13045-13054.

160. Z. Jia, Z. Li, et al., Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally- prepared poly(vinyl alcohol) microspheres. Journal of Molecular Liquids, 2016, 220, 56-62.

161. M. S. El-Geundi, Homogeneous Surface Diffusion Model for the Adsorption of Basic Dyestuffs onto Natural Clay in Batch Adsorbers. Adsorption Science & Technology, 1991, 8(4), 217-225.

162. J. S. Cao, J. X. Lin, et al., A new absorbent by modifying walnut shell for the removal of anionic dye: Kinetic and thermodynamic studies. Bioresource Technology, 2014, 163, 199-205.

163. Y. Zhou, S. Fu, et al., Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydrate Polymers, 2014b, 101, 75-82.

164. Q.-Q. Zhuang, J.-P. Cao, et al., Heteroatom nitrogen and oxygen co-doped three-dimensional honeycomb porous carbons for methylene blue efficient removal. Applied Surface Science, 2021, 546, 149139.

165. J. O. Ighalo, K. O. Iwuozor, et al., Verification of pore size effect on aqueous- phase adsorption kinetics: A case study of methylene blue. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 127119.

166. Z. Wang, B. Xiang, et al., Behaviors and mechanism of acid dyes sorption onto diethylenetriamine-modified native and enzymatic hydrolysis starch. Journal of Hazardous Materials, 2010, 183(1–3), 224-232.

167. O. Amuda, A. Olayiwola, et al., Adsorption of Methylene Blue from Aqueous Solution Using Steam-Activated Carbon Produced from Lantana camara Stem. Vol. 05. 2014. 1352-1363.

168. F. J. Tuli, A. Hossain, et al., Removal of methylene blue from water by low- cost activated carbon prepared from tea waste: A study of adsorption isotherm and kinetics. Environmental Nanotechnology, Monitoring & Management, 2020, 14, 100354.

169. D. Yamaguchi and M. Hara, Starch saccharification by carbon-based solid acid catalyst. Solid State Sciences, 2010, 12(6), 1018-1023.

170. H. Palonen, Role of Lignin in the Enzymatic Hydrolysis of Lignocellulose.

951-38-6271-2, 2004, 520.

171. J. Zhao, C. Zhou, et al., Efficient dehydration of fructose to 5- hydroxymethylfurfural over sulfonated carbon sphere solid acid catalysts. Catalysis Today, 2016, 264, 123-130.

172. H. Guo, X. Qi, et al., Hydrolysis of cellulose over functionalized glucose- derived carbon catalyst in ionic liquid. Bioresource technology, 2012, 116, 355-359.

173. P. W. Chung, A. Charmot, et al., Hydrolysis catalysis of miscanthus xylan to xylose using weak-acid surface sites. ACS Catalysis, 2014, 4(1), 302-310.

174. A. Charmot, P. W. Chung, et al., Catalytic hydrolysis of cellulose to glucose using weak-acid surface sites on postsynthetically modified carbon. ACS Sustainable Chemistry & Engineering, 2014, 2(12), 2866-2872.

175. J. Su, M. Qiu, et al., Efficient hydrolysis of cellulose to glucose in water by agricultural residue-derived solid acid catalyst. Cellulose, 2018, 25(1), 17-22.

PHỤ LỤC


Phụ lục 1: Bảng PL1. Ma trận thiết kế hoàn chỉnh cho các thí nghiệm và hiệu suất Hydrochar vỏ hạt cà phê thu được từ quá trình carbon hóa thủy nhiệt (%).

Số thứ tự thí

nghiệm

Nhiệt

độ

Thời

gian

Vỏ hạt cà phê

/Nước

Hiệu suất Hydrochar

vỏ hạt cà phê

1

-1

-1

-1

71,77

2

1

-1

-1

49,29

3

-1

1

-1

57,26

4

1

1

-1

42,95

5

-1

-1

1

71,43

6

1

-1

1

45,61

7

-1

1

1

57,30

8

1

1

1

39,65

9

-1

0

0

59,71

10

1

0

0

49,76

11

0

-1

0

57,71

12

0

1

0

52,65

13

0

0

-1

54,05

14

0

0

1

53,60

15

0

0

0

54,85

16

0

0

0

54,82

17

0

0

0

54,83

18

0

0

0

54,82

19

0

0

0

54,81

20

0

0

0

54,86

Có thể bạn quan tâm!

Xem toàn bộ 180 trang tài liệu này.

Nghiên cứu than hóa phụ phẩm nông nghiệp vỏ hạt cà phê, lõi bắp bằng phương pháp carbon hóa thủy nhiệt, ứng dụng làm vật liệu hấp phụ và xúc tác - 21

Phụ lục 2: Bảng PL 2. Ma trận thiết kế hoàn chỉnh cho các thí nghiệm và hiệu suất Hydrochar lõi bắp thu được từ quá trình carbon hóa thủy nhiệt (%).

Số thứ tự thí

nghiệm

Nhiệt

độ

Thời

gian

Lõi bắp /Nước

Hiệu suất

Hydrochar lõi bắp

1

–1

–1

–1

78,449

2

1

–1

–1

48,768

3

–1

1

–1

48,363

4

1

1

–1

43,233

5

–1

–1

1

82,920

6

1

–1

1

46,204

7

–1

1

1

62,115

8

1

1

1

44,162

9

–1

0

0

57,898

10

1

0

0

50,541

11

0

–1

0

61,662

12

0

1

0

52,311

13

0

0

–1

50,099

14

0

0

1

53,331

15

0

0

0

52,149

16

0

0

0

53,380

17

0

0

0

52,594

18

0

0

0

52,500

19

0

0

0

51,709

20

0

0

0

52,027

Phụ lục 3: Bảng PL 3. Hệ số hồi quy ước lượng mối tương quan của các yếu tố ảnh hưởng trong quá trình HTC vỏ hạt cà phê.

Yếu tố

Hệ số

Sai số chuẩn

Giá trị p

Khoảng tin cậy

Hằng số

54,7306

0,1313

1,213x10-16

0,3106

Nhiệt độ

-3,3692

0,1960

5,546x10-7

0,4635

Thời gian

-1,8716

0,1960

2,902x10-5

0,4635

Tỉ lệ sinh khối: nước

-0,2471

0,1960

0,2477

0,4635

(Nhiệt độ)2

0,0463

0,1212

0,7134

0,2868

(Thời gian)2

0,1736

0,1212

0,1954

0,2868

(Tỉ lệ sinh khối: nước)2

-0,2137

0,1212

0,1213

0,2868

Nhiệt độ x Thời gian

0,8992

0,0711

4,469x10-6

0,1681

Nhiệt độ x Tỉ lệ sinh khối: nước

-0,3829

0,0711

0,0010

0,1681

Thời gian x Tỉ lệ sinh khối: nước

-0,0161

0,0711

0,8265

0,1681

(Nhiệt độ)2 x Thời gian

-1,1095

0,1153

2,764x10-5

0,2727

(Nhiệt độ)2xTỉ lệ sinh khối: nước

-0,1643

0,1153

0,1972

0,2727

Nhiệt độ x (Thời gian)2

-1,9286

0,1153

6,700x10-7

0,2727

Phụ lục 4: Bảng PL 4. Hệ số hồi quy ước lượng mối tương quan của các yếu tố ảnh hưởng trong quá trình HTC lõi bắp.

Yếu tố

Hệ số

Sai số

chuẩn

Giá trị p

Khoảng

tin cậy

Hằng số

52,9741

0,5990

6,23 x 10–12

1,4165

Nhiệt độ

– 3,6387

0,8939

0,0047

2,1137

Thời gian

– 2,7086

0,8939

0,0191

2,1137

Tỉ lệ sinh khối: nước

0,8106

0,8939

0,3946

2,1137

(Nhiệt độ)2

0,5885

0,5530

0,3225

1,3077

(Thời gian)2

1,3574

0,5530

0,0438

1,3077

(Tỉ lệ sinh khối: nước)2

– 0,1074

0,5530

0,8514

1,3077

Nhiệt độ x Thời gian

2,8616

0,3242

4,85 x 10–5

0,7667

Nhiệt độ x Tỉ lệ sinh khối: nước

– 1,3119

0,3242

0,0048

0,7667

Thời gian x Tỉ lệ sinh khối: nước

0,8439

0,3242

0,0352

0,7667

(Nhiệt độ)2 x Thời gian

– 1,4396

0,5260

0,0290

1,2438

(Nhiệt độ)2x Tỉ lệ sinh khối: nước

0,3968

0,5260

0,4752

1,2438

Nhiệt độ x (Thời gian)2

– 2,3429

0,5260

0,0029

1,2438


Phụ lục 5: Bảng PL 5. Thông số phương trình đẳng nhiệt hấp phụ xanh methylen của các mẫu than sinh học hoạt hóa.


STT

Vật liệu

Mô hình đẳng nhiệt Langmuir

Mô hình đẳng nhiệt Freundlich

q thực nghiệm

Qm (mg/g)

KL (L/mg)

RL

R2

KF

n

R2

qexp (mg/g)

1

CHhydro

357,14

0,6667

0,0030 - 0,0291

1,000

129,60

4,10

0,661

357,38 ± 0,349

2

CChydro

400,00

0,6579

0,0149 - 0,0295

0,998

153,39

4,43

0,536

395,05 ± 0,931

3

CHmagnet

270,27

0,0629

0,0002 - 0,2382

0,994

44,79

2,94

0,966

263,21 ± 0,972

4

CCmagnet

285,71

0,0582

0,0332 - 0,2540

0,994

44,21

2,85

0,977

271,27 ± 0,985

5

CHimpreg

316,46

0,7822

0,0026 - 0,0249

1,000

124,19

4,86

0,604

314,05 ± 0,978

6

CCimpreg

370,37

0,6585

0,0030 - 0,0295

1,000

126,33

3,65

0,676

369,76 ± 0,894

7

CHactiv

500,00

1,2500

0,0016 - 0,0157

0,998

233,92

3,75

0,638

475,43 ± 0,578

8

CCactiv

500,00

0,9091

0,0022 - 0,0215

0,995

189,54

2,25

0,746

481,58 ± 0,921

9

CHbiochar

312,50

1,6842

0,0012 - 0,0117

1,000

134,00

4,86

0,718

315,53 ± 0,879

10

CCbiochar

322,58

0,7561

0,0026 - 0,0258

1,000

119,59

4,31

0,623

322,00 ± 0,953

Xem tất cả 180 trang.

Ngày đăng: 12/03/2023
Trang chủ Tài liệu miễn phí