Nghiên cứu than hóa phụ phẩm nông nghiệp vỏ hạt cà phê, lõi bắp bằng phương pháp carbon hóa thủy nhiệt, ứng dụng làm vật liệu hấp phụ và xúc tác - 20

TÀI LIỆU THAM KHẢO


1. S. K. Mohanty, R. Valenca, et al., Plenty of room for carbon on the ground: Potential applications of biochar for stormwater treatment. Science of The Total Environment, 2018, 625, 1644-1658.

2. H. Kobayashi, M. Yabushita, et al., High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid. ACS Catalysis, 2013, 3, 581–587.

3. H. Kobayashi, M. Yabushita, et al., Depolymerization of Cellulosic Biomass Catalyzed by Activated Carbons. 2016, 15-26.

4. IBI, Standardized product definition and product testing guidelines for biochar that is used in Soil. International Biochar Initiative, 2013, 1-48.

5. Q. Wu, S. Yu, et al., Characterization of products from hydrothermal carbonization of pine. Bioresource Technology, 2017, 244, 78-83.

6. S. Nizamuddin, N. M. Mubarak, et al., Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel, 2016, 163, 88-97.

7. H. S. Kambo and A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 2015, 45, 359-378.

8. S. Masoumi, V. B. Borugadda, et al., Hydrochar: A Review on Its Production Technologies and Applications. Catalysts, 2021, 11(8), 939.

Có thể bạn quan tâm!

Xem toàn bộ 180 trang tài liệu này.

9. Z. Zhang, Z. Zhu, et al., Insights into Biochar and Hydrochar Production and Applications: A Review. Energy, 2019, 171.

10. https://www.thomasnet.com/articles/chemicals/producing-activated-carbon/

Nghiên cứu than hóa phụ phẩm nông nghiệp vỏ hạt cà phê, lõi bắp bằng phương pháp carbon hóa thủy nhiệt, ứng dụng làm vật liệu hấp phụ và xúc tác - 20

11. M. F. F. Pego, M. L. Bianchi, et al., Surface modification of activated carbon by corona treatment. An Acad Bras Cienc, 2019, 91(1), e20170947.

12. Đ. V. Kha. Tình hình nghiên cứu và sản xuất nhiên liệu sinh học trên thế giới và Việt Nam. 2012. Trung tâm Nghiên cứu Triển khai Công nghệ Hóa học - Chi nhánh Viện Hoá học Công nghiệp Việt Nam http://www.thegioidaunhon.vn/vn/detail/news/tinh-hinh-nghien-cuu-va-san-xuat-nhien-lieu-sinh-hoc-tren-the-gioi-va-viet-nam/1265.

13. R. Sharma, T. Jasrotia, et al., An insight into the mechanism of ‘symbiotic- bioremoval’ of heavy metal ions from synthetic and industrial samples using bacterial consortium. Environmental Technology & Innovation, 2021, 21, 101302.

14. H. Bamdad, K. Hawboldt, et al., A review on common adsorbents for acid gases removal: Focus on biochar. Renewable and Sustainable Energy Reviews, 2017.

15. C. F. Liu and R. C. Sun, Chapter 5 - Cellulose, in Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, R. C. Sun, Editor. 2010, Elsevier: Amsterdam, 131-167.

16. K. Tekin, S. Karagöz, et al., A review of hydrothermal biomass processing.

Renewable and Sustainable Energy Reviews, 2014, 40, 673-687.

17. P. Basu, Chapter 2 - Biomass Characteristics, in Biomass Gasification and Pyrolysis, P. Basu, Editor. 2010, Academic Press: Boston, 27-63.

18. J. L. Ren and R. C. Sun, Chapter 4 - Hemicelluloses, in Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, R. C. Sun, Editor. 2010, Elsevier: Amsterdam, 73-130.

19. F. Lu and J. Ralph, Chapter 6 - Lignin, in Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels, R. C. Sun, Editor. 2010, Elsevier: Amsterdam, 169-207.

20. S. V. Vassilev, D. Baxter, et al., An overview of the organic and inorganic phase composition of biomass. Fuel, 2012, 94, 1-33.

21. P. E. Savage, R. B. Levine, et al., Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. In:Crocker M., editor. Fuels and chemicals. Cambridge: RSC Publishing. Vol. Chapter 8. 2010.

22. S. B. Scholz, T. Sembres, et al., Biochar systems for smallholders in developing countries: leveraging current knowledge and exploring future potential for climate-smart agriculture. 2014: The World Bank.

23. A. Medhat, H. H. El-Maghrabi, et al., Efficiently activated carbons from corn cob for methylene blue adsorption. Applied Surface Science Advances, 2021, 3, 100037.

24. Y. Shen, A review on hydrothermal carbonization of biomass and plastic wastes to energy products. Biomass and Bioenergy, 2020, 134, 105479.

25. M. M. Titirici and M. Antonietti, Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev, 2010, 39(1), 103-116.

26. A. U. Rajapaksha, S. S. Chen, et al., Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere, 2016, 148, 276-91.

27. W. Hao, Refining of hydrochars/hydrothermally carbonized biomass into activated carbons and their applications. 2014, Department of Materials and Environmental Chemistry (MMK), Stockholm University.

28. H. Yi, K. Nakabayashi, et al., Pressurized physical activation: A simple production method for activated carbon with a highly developed pore structure. Carbon, 2021, 183, 735-742.

29. P. Paraskeva, D. Kalderis, et al., Production of activated carbon from agricultural by‐products. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 2008, 83(5), 581-592.

30. M. M. Titirici, Sustainable carbon materials from hydrothermal processes, chapter 3: Porous Biomass-Derived Carbons: Activated Carbons. 2013: John Wiley & Sons.

31. A. A. Szogi, Vanotti, M.B., and Stansbery, A.E., Reduction of ammonia emissions from treated anaerobic swine lagoons. Transactions of the American Society of Agricultural Engineers, 2006, 217-225.

32. S. Sangon, A. J. Hunt, et al., Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. Journal of Cleaner Production, 2018, 172, 1128-1139.

33. R. Becker, U. Dorgerloh, et al., Hydrothermal carbonization of biomass: major organic components of the aqueous phase. Chemical Engineering & Technology, 2014, 37(3), 511-518.

34. Z. F. Liu Z., Wu J., Characterization and application of chars produced from pinewood pyrolysis and hydrothermal treatment. Fuel, 2010, 89(2), 510-514.

35. G. Brunner, Near critical and supercritical water . Part I . Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids, 2009, 47, 373– 381.

36. J. A. Libra, K. S. Ro, et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2011, 2(1), 71-106.

37. M. Möller, P. Nilges, et al., Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. ChemSusChem, 2011, 4, 566-79.

38. M. M. Titirici, A. Thomas, et al., A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chemistry of Materials, 2007, 19(17), 4205- 4212.

39. E. L. Mumme J., Pielert J., Diakité M., Rupp F., Kern J., Hydrothermal carbonization of anaerobically digested maize silage. Bioresource Technology, 2011, 102, 9255-9260.

40. N. D. Berge, K. S. Ro, et al., Hydrothermal Carbonization of Municipal Waste Streams. Environmental Science & Technology, 2011, 45(13), 5696-5703.

41. M. Sevilla, A. B. Fuertes, et al., High density hydrogen storage in superactivated carbons from hydrothermally carbonized renewable organic materials. Energy & Environmental Science, 2011, 4(4), 1400-1410.

42. L. Ding, B. Zou, et al., A new route for conversion of corncob to porous carbon by hydrolysis and activation. Chemical Engineering Journal, 2013, 225, 300-305.

43. D. Knezevic, W. Van Swaaij, et al., Hydrothermal conversion of biomass. II. Conversion of wood, pyrolysis oil, and glucose in hot compressed water. Industrial & Engineering Chemistry Research, 2009, 49(1), 104-112.

44. M. Sevilla and A. B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. - Eur. J., 2009, 15(16), 4195-4203.

45. A. Funke and F. Ziegler, Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 2010, 4(2), 160-177.

46. M. M. Titirici, R. J. White, et al., Black perspectives for a green future: hydrothermal carbons for environment protection and energy storage. Energy Environ. Sci. , 2012, 5, 6796–6822.

47. M. M. Tang and R. Bacon, Carbonization of cellulose fibers—I. Low temperature pyrolysis. Carbon, 1964, 2(3), 211-220.

48. V. K. L. Mer, Nucleation in Phase Transitions. Industrial & Engineering Chemistry, 1952, 44(6), 1270-1277.

49. M. Sevilla and A. B. Fuertes, The production of carbon materials by hydrothermal carbonization of cellulose. Carbon, 2009, 47(9), 2281-2289.

50. Suhas, P. J. M. Carrott, et al., Lignin – from natural adsorbent to activated carbon: A review. Bioresource Technology, 2007, 98(12), 2301-2312.

51. S. Kang, X. Li, et al., Characterization of Hydrochars Produced by Hydrothermal Carbonization of Lignin, Cellulose, d-Xylose, and Wood Meal. Industrial & Engineering Chemistry Research, 2012, 51(26), 9023-9031.

52. Z. Fang, T. Sato, et al., Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresource Technology, 2008, 99(9), 3424-3430.

53. E. Dinjus, A. Kruse, et al., Hydrothermal Carbonization – 1. Influence of Lignin in Lignocelluloses. Chemical Engineering & Technology, 2011, 34(12), 2037-2043.

54. A. Jain, R. Balasubramanian, et al., Tuning hydrochar properties for enhanced mesopore development in activated carbon by hydrothermal carbonization. Microporous and Mesoporous Materials, 2015, 203, 178-185.

55. A. J. Romero-Anaya, M. Ouzzine, et al., Spherical carbons: Synthesis, characterization and activation processes. Carbon, 2014, 68, 296-307.

56. Y. Xue, B. Gao, et al., Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal, 2012, 200-202, 673-680.

57. A. Jain, R. Balasubramanian, et al., Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chemical Engineering Journal, 2016, 283, 789-805.

58. V. K. Gupta and A. Nayak, Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chemical Engineering Journal, 2012, 180, 81-90.

59. C. J. Barrow, Biochar: Potential for countering land degradation and for improving agriculture. Applied Geography, 2012, 34, 21-28.

60. P. Blackwell, G. Riethmuller, et al., Biochar for environmental management: Science and technology. 2009, 207-222.

61. T. M. Vu, V. T. Trinh, et al., Removing ammonium from water using modified corncob-biochar. Science of The Total Environment, 2017, 579, 612-619.

62. V. T. Mai and T. V. Tuyên, Nghiên cứu khả năng xử lý amoni trong môi trường nước của than sinh học từ lõi ngô biến tính bằng H3PO4 và NaOH. VNU Journal of Science: Earth and Environmental Sciences, 2016, 32(1S).

63. N. T. T. Hải, L. T. C. Nhung, et al., Nghiên cứu đánh giá dung lượng hấp phụ hơi thủy ngân của than hoạt tính biến tính bằng các hợp chất chứa clorua. Tạp chí Khoa học Công nghệ, 2012, 50(2b), 266-271.

64. L. T. C. Nhung, N. T. T. Hải, et al., Nghiên cứu biến tính than hoạt tính bằng dung dịch đồng clorua để xử lý thủy ngân ở dạng hơi. Tạp chí Phân tích Hoá, Lý và Sinh học, 2013, T18(1), 69-73.

65. T. H. Côn, Đ. Q. Trung, et al., Nghiên cứu biến tính than hoạt tính bằng halogen làm vật liệu hấp phụ hơi thủy ngân. VNU Journal of Science, 2014, 30(5S), 20-30.

66. N. T. T. Hải, N. T. Huệ, et al., Loại bỏ ion thủy ngân trong dung dịch nước bằng vật liệu than hoạt tính biến tính với đồng clorua,. Khoa học Công nghệ, 2014, 52(2D), 69-75.

67. M. Q. P. Binh, T. D. Long, et al., Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis. Biomass and Bioenergy, 2014, 62, 74-81.

68. V. Bùi Anh and L. Nguyễn Đức, nghiên cứu thu nhận pectin từ vỏ cà phê.

Science & Technology Development, 2010, 13.

69. N. Đ. L. Trần Thị Thanh Thuần, Nghiên cứu enzyme cellulase và pectinase từ chủng trichoderma viride và aspergillus niger nhằm xử lý nhanh vỏ cà phê. Science & Technology Development, 2009, 12.

70. N. M. H. Nguyễn Thái Huy, Lê Thị Ngọc Thúy, Nghiên cứu sản xuất giá thể trồng rau, hoa, cây cảnh từ vỏ cà phê và bã mía. 2011(Hội thảo Quốc gia về khoa học Cây trồng lần thứ nhất).

71. K. Y. Foo and B. H. Hameed, Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology, 2012, 104, 679-686.

72. M. Benadjemia, L. Millière, et al., Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Processing Technology, 2011, 92(6), 1203-1212.

73. N. V. Sych, S. I. Trofymenko, et al., Porous structure and surface chemistry of phosphoric acid activated carbon from corncob. Applied Surface Science, 2012, 261, 75-82.

74. L. Lin, S. R. Zhai, et al., Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks. Bioresource Technology, 2013, 136, 437-443.

75. K. Y. Foo and B. H. Hameed, Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chemical Engineering Journal, 2011, 173(2), 385-390.

76. K. Y. Foo and B. H. Hameed, Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation. Chemical Engineering Journal, 2012, 187, 53-62.

77. K. Foo and B. Hameed, Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresource technology, 2012, 112, 143-150.

78. ĩ. Geỗgel, G. ệzcan, et al., Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum). Journal of Chemistry, 2012, 2013.

79. T. C. Chandra, M. M. Mirna, et al., Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal, 2007, 127(1), 121-129.

80. I. A. W. Tan, A. L. Ahmad, et al., Adsorption of basic dye using activated carbon prepared from oil palm shell: batch and fixed bed studies. Desalination, 2008, 225(1), 13-28.

81. K. Y. Foo and B. H. Hameed, Porous structure and adsorptive properties of pineapple peel based activated carbons prepared via microwave assisted KOH and K2CO3 activation. Microporous and Mesoporous Materials, 2012, 148(1), 191-195.

82. K. Y. Foo and B. H. Hameed, Coconut husk derived activated carbon via microwave induced activation: Effects of activation agents, preparation parameters and adsorption performance. Chemical Engineering Journal, 2012, 184, 57-65.

83. K. Y. Foo and B. H. Hameed, Microwave-assisted preparation and adsorption performance of activated carbon from biodiesel industry solid reside: Influence of operational parameters. Bioresource Technology, 2012, 103(1), 398-404.

84. K. Y. Foo and B. H. Hameed, Utilization of oil palm biodiesel solid residue as renewable sources for preparation of granular activated carbon by microwave induced KOH activation. Bioresource Technology, 2013, 130, 696-702.

85. K. Y. Foo and B. H. Hameed, Preparation and characterization of activated carbon from pistachio nut shells via microwave-induced chemical activation. Biomass and Bioenergy, 2011, 35(7), 3257-3261.

86. G. M. Couto, A. L. d. A. Dessimoni, et al., Use of sawdust Eucalyptus sp. in the preparation of activated carbons. Ciência e Agrotecnologia, 2012, 36(1), 69-77.

87. K. Y. Foo and B. H. Hameed, Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresource Technology, 2012, 111, 425-432.

88. K. Y. Foo and B. H. Hameed, Factors affecting the carbon yield and adsorption capability of the mangosteen peel activated carbon prepared by microwave assisted K2CO3 activation. Chemical Engineering Journal, 2012, 180, 66-74.

89. B. D. Ramke. H.G, Lehmann. H.J, Fettig. J, Hydrothermal cacbonization of organic waste. in : Cossu, R., Diaz, L.F., Stegmann, R. (Eds.). Sardinia 2009: Twelfth International Waste Management and Landfill Symposium Proceedings, CISA Publisher, 2009, ISBN 978-88-6265-007-6.

90. P. Regmi, J. Garcia, et al., Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. Journal of environmental management, 2012, 109, 61-9.

91. M. Inagaki, K. C. Park, et al., Carbonization under pressure. New Carbon Materials, 2010, 25(6), 409-420.

92. L. P. Xiao, Z. J. Shi, et al., Hydrothermal carbonization of lignocellulosic biomass. Bioresource technology, 2012, 118, 619-23.

93. J. Libra, S. R. Kyoung, et al., Hydrothermal cacbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels 2 (1)(71–106).

94. M. Huan, B. L. Jia, et al., Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresource Technology, 2015, 190.

95. W. H. Qu, Y. Y. Xu, et al., Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes. Bioresource Technology, 2015, 189, 285-291.

96. Z. Liu, A. Quek, et al., Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 2013, 103, 943-949.

97. K. L. Chang, C. C. Chen, et al., Rice straw-derived activated carbons for the removal of carbofuran from an aqueous solution. Carbon, 2014, 71, 344.

98. M. Yabushita, H. Kobayashi, et al., Catalytic transformation of cellulose into platform chemicals. Applied Catalysis B: Environmental, 2014, 145, 1-9.

99. R. H. Y. Chang, J. Jang, et al., Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chemistry, 2011, 13(10), 2844-2850.

100. Y. C. Lee, C. T. Chen, et al., An Effective Cellulose to Glucose to Fructose Conversion Sequence by Using Enzyme Immobilized Fe3O4-Loaded Mesoporous Silica Nanoparticles as Recyclable Biocatalysts. ChemCatChem, 2013, 5(8), 2153-2157.

101. M. A. Harmer, A. Fan, et al., A new route to high yield sugars from biomass: phosphoric–sulfuric acid. Chemical Communications, 2009(43), 6610-6612.

102. A. Farone William and A. Fatigati Michael, Separation Of Xylose And Glucose. 2004, FARONE WILLIAM A. FATIGATI MICHAEL A.: US.

103. M. Benoit, A. Rodrigues, et al., Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chemistry, 2012, 14(8), 2212-2215.

104. J. Hilgert, N. Meine, et al., Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy & Environmental Science, 2013, 6, 92-96.

105. J. Pang, A. Wang, et al., Hydrolysis of cellulose into glucose over carbons sulfonated at elevated temperatures. Chemical Communications, 2010, 46(37), 6935-6937.

106. L. Shuai and X. Pan, Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy & Environmental Science, 2012, 5.

107. H. Kobayashi, H. Ohta, et al., Conversion of lignocellulose into renewable chemicals by heterogeneous catalysis. Catalysis Science & Technology, 2012, 2(5), 869-883.

108. S. Van de Vyver, J. Geboers, et al., Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3(1), 82-94.

109. H. Wang, C. Zhang, et al., Glucose production from hydrolysis of cellulose over a novel silica catalyst under hydrothermal conditions. Journal of Environmental Sciences, 2012, 24(3), 473-478.

110. J. B. Binder and R. T. Raines, Fermentable sugars by chemical hydrolysis of biomass. Proceedings of the National Academy of Sciences, 2010, 107(10), 4516-4521.

111. D. L. Zechel and S. G. Withers, Glycosidase Mechanisms:  Anatomy of a Finely Tuned Catalyst. Accounts of Chemical Research, 2000, 33(1), 11-18.

112. H. Ma, J. B. Li, et al., Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresource Technology, 2015, 190, 13-20.

113. S. K. Hoekman, A. Broch, et al., Hydrothermal Carbonization (HTC) of Lignocellulosic Biomass. Energy & Fuels, 2011, 25(4), 1802-1810.

114. H. M. Liu, X. A. Xie, et al., Hydrothermal liquefaction of cypress: Effects of reaction conditions on 5-lump distribution and composition. Journal of Analytical and Applied Pyrolysis, 2012, 94, 177-183.

115. T. Rogalinski, T. Ingram, et al., Hydrolysis of lignocellulosic biomass in water under elevated temperatures and pressures. The Journal of Supercritical Fluids, 2008, 47(1), 54-63.

116. T. Wei, X. Wei, et al., Large scale production of biomass-derived nitrogen- doped porous carbon materials for supercapacitors. Electrochimica Acta, 2015, 169, 186-194.

117. M. J. P. Brito, C. M. Veloso, et al., Adsorption of the textile dye Dianix® royal blue CC onto carbons obtained from yellow mombin fruit stones and activated

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 12/03/2023