Nghiên cứu phát triển chủng nấm sợi và tối ưu điều kiện lên men sản xuất đa enzyme α-amylase, glucoamylase, cellulase ứng dụng trong chế biến thức ăn chăn nuôi - 15

wastes. Journal of microbiology and biotechnology research. 2(1): 120-128.

56. Ellaiah P., Adinarayana K., Bhavani Y., Padmaja P., & Srinivasulu B. (2002). Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620.

57. Ezekiel O. O., Aworh O. C., Blaschek H. P. & Ezeji T. C. (2010). Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). African Journal of Biotechnology. 9(2): 187-194.

58. Fasim A., More V. S., & More S. S. (2021). Large-scale production of enzymes for biotechnology uses. Current Opinion in Biotechnology. 69: 68-76.

59. Faostat F. (2009). Agriculture organization of the United Nations.

60. Fawzi E. M. & Hamdy H. S. (2011). Improvement of carboxymethyl cellulase production from Chaetomium cellulolyticum NRRL 18756 by mutation and optimization of solid state fermentation. African Journal of Microbiology Research. 5(26): 4687-4696.

61. Ghani M., Aman A., Rehman H. U., Siddiqui N. N. & Qader S. A. (2013). Strain improvement by mutation for enhanced production of starchsaccharifying glucoamylase from Bacillus licheniformis. StarchStärke. 65(910): 875-884.

62. Gonzalez J. B., Fernandez F. & Tomasini A. (2003). Microbial secondary metabolites production and strain improvement. Microbial secondary metabolites production and strain improvement. Indian journal of Biotechnology. 2(3): 322-333.

63. Graham H. & Balnavel D. (2008). Dietary enzymes for increasing energy availability. Biotechnology in animal feeds and animal feeding. 295-309.

64. Grajek W. (1987). Comparative studies on the production of cellulases by thermophilic fungi in submerged and solid-state fermentation. Applied Microbiology and Biotechnology. 26(2): 126-129.

Có thể bạn quan tâm!

Xem toàn bộ 197 trang tài liệu này.

65. Gupta A., Gupta V., Modi D. & Yadava L. (2008). Production and characterization of α-amylase from Aspergillus niger. Biotechnology. 7(3): 551-556.

66. Haddadin M. S., Abdulrahim S. M., AlKhawaldeh G. Y. & Robinson R. K. (1999). Solid state fermentation of waste pomace from olive processing. Journal of Chemical Technology and Biotechnology. 74(7): 613-618.

Nghiên cứu phát triển chủng nấm sợi và tối ưu điều kiện lên men sản xuất đa enzyme α-amylase, glucoamylase, cellulase ứng dụng trong chế biến thức ăn chăn nuôi - 15

67. Ikram-Ul-Haq U. H., Shahzadi K., Javed M. S. A., & Qadeer M. A. (2005). Cotton Saccharifying activity of cellulases by Trichoderma harzianum UM-11 in shake flask. International Journal of Botany. 1(1): 19-22.

68. Herago T. & Agonafir A. (2017). Growth Promoters in Cattle. Advances in Biological Research. 11(1): 24-34.

69. Heres L., Engel B., Van Knapen F., De Jong M., Wagenaar J. & Urlings H. (2003). Fermented liquid feed reduces susceptibility of broilers for Salmonella enteritidis. Poultry Science. 82(4): 603-611.

70. Hill C., Guarner F., Reid G., Gibson G. R., Merenstein D. J., Pot B., Morelli L., Canani R. B., Flint H. J. & Salminen S. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature reviews Gastroenterology & hepatology. 11(8): 506-514.

71. Ho H. & Ho K. (2015). Fungal Strain Improvement of Aspergillus brasiliensis for Overproduction of Xylanase in Submerged Fermentation through UV Irradiation and Chemicals Mutagenesis. Journal of Advances in Biology & Biotechnology. 3(3): 117-131.

72. Huang D., Song Y., Liu Y. & Qin Y. (2019). A new strain of Aspergillus tubingensis for high-activity pectinase production. Brazilian Journal of Microbiology. 50(1): 53-65.

73. Imran M., Asad M. J., Gulfraz M., Qureshi R., Gul H., Manzoor N. & Choudhary

A. N. (2012). Glucoamylase production from Aspergillus niger by using solid state fermentation process. Pakistan Journal of Botany. 44(6): 2103-2110.

74. Irfan M., Javed J. & Syed Q. (2011). UV mutagenesis of Aspergillus niger for enzyme production in submerged fermentation. Pakistan Journal of Biochemistry and Molecular Biology. 44(4): 137-140.

75. Jensen B. & Mikkelsen L. (2001). Feeding liquid diets to pigs. Recent developments in pig nutrition. 3: 379-398.

76. John R. P., Nampoothiri K. M. & Pandey A. (2006). Simultaneous saccharification and fermentation of cassava bagasse for L-(+)-lactic acid production using Lactobacilli. Applied biochemistry and biotechnology. 134(3): 263-272.

77. Karanam S. K. & Medicherla N. R. (2008). Enhanced lipase production by mutation induced Aspergillus japonicus. African Journal of Biotechnology. 7(12): 2064-2067.

78. Karmakar M. & Ray R. (2011). Current trends in research and application of microbial cellulases. Research Journal of Microbiology. 6(1): 41-53.

79. Kathiresan K., & Manivannan S. Cellulase production by Penicillium fellutanum

isolated from coastal mangrove rhizosphere soil. Res J Microbial. 1(5): 438-42.

80. Kavya V., & Padmavathi T. (2009). Optimization of growth conditions for xylanase production by Aspergillus niger in solid state fermentation. Polish Journal of Microbiology. 58(2): 125-130.

81. Kaur B., Oberoi H. & Chadha B. (2014). Enhanced cellulase producing mutants developed from heterokaryotic Aspergillus strain. Bioresource Technology. 156: 100-107.

82. Kobashi Y., Ohmori H., Tajima K., Kawashima T. & Uchiyama H. (2008). Reduction of chlortetracycline-resistant Escherichia coli in weaned piglets fed fermented liquid feed. Anaerobe. 14(4): 201-204.

83. Kortz J., Otolińska A., Rybarczyk A., Karamucki T. & Natalczyk-Szymkowska W. (2005). Meat quality of Danish Yorkshire porkers and their hybrids with Polish Large White pigs. Polish Journal of Food and Nutrition Sciences. 14(55): 13-16.

84. Kosovac O., Živković B., Radović Č. & Smiljaković T. (2009). Quality indicators: Carcass side and meat quality of pigs of different genotypes. Biotechnology in Animal Husbandry. 25(3-4): 173-188.

85. Krainer F. W., Dietzsch C., Hajek T., Herwig C., Spadiut O., & Glieder A. (2012). Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway. Microbial cell factories. 11(1): 1-14.

86. Kuhad R. C., Gupta R. & Singh A. (2011). Microbial cellulases and their industrial applications. Enzyme research 2011. 1-10.

87. Kumari S., Bhattacharya S. & Das A. (2012). Solid-state fermentation and characterization of amylase from a thermophilic Aspergillus niger isolated from Municipal Compost soil. Journal of Chemical, Biological and Physical Sciences (JCBPS). 2(2): 836.

88. Latif F., Rajoka M. I. & Malik K. A. (1994). Saccharification of Leptochloa fusca (Kallar grass straw) using thermostable cellulases. Bioresource Technology. 50(2): 107-111.

89. Latorre M., Lázaro R., Valencia D., Medel P. & Mateos G. (2004). The effects of gender and slaughter weight on the growth performance, carcass traits, and meat quality characteristics of heavy pigs. Journal of Animal Science. 82(2): 526-533.

90. Le T. M. T., Hoang D. A., Nguyen H. P., Trinh V. V., Tran T. H., Dang T. M. A. & Ha T. Q. (2020). Using cassava waste of the cassava starch processing as food for raising African Nightcrawler (Eudrilus eugeniae) to obtain vermicomposting

and earthworm biomass. Journal of Vietnamese Environment. 12(2): 169-176.

91. Lei X. G. & Stahl C. H. (2000). Nutritional benefits of phytase and dietary determinants of its efficacy. Journal of Applied Animal Research. 17(1): 97-112.

92. Li X., Yang H., Roy B., Park E. Y., Jiang L., Wang D. & Miao Y. (2010). Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiological Research. 165(3): 190-198.

93. Manpreet S., Sawraj S., Sachin D., Pankaj S. & Banerjee U. (2005). Influence of process parameters on the production of metabolites in solid-state fermentation. Malaysian Journal of Microbiology. 2(1): 1-9.

94. Mccann M., Beattie V., Watt D. & Moss B. (2008). The effect of boar breed type on reproduction, production performance and carcass and meat quality in pigs. Irish Journal of Agricultural and Food Research. 47: 171-185.

95. Miller G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31(3): 426-428.

96. Mishra L., Vernekar M. & Harmalkar M. (2014). Effect of UV and nitrous acid treatment on production of xylanase enzyme by Acinetobacter sp. International Journal of Current Microbiology and Applied Sciences. 3(1): 45-53.

97. Missotten J. A., Michiels J., Degroote J. & De Smet S. (2015). Fermented liquid feed for pigs: an ancient technique for the future. Journal of animal science and biotechnology. 6(1): 1-9.

98. Mohrmann M., Roehe R., Susenbeth A., Baulain U., Knap P., Looft H., Plastow G. & Kalm E. (2006). Association between body composition of growing pigs determined by magnetic resonance imaging, deuterium dilution technique, and chemical analysis. Meat Science. 72(3): 518-531.

99. Mukherjee R., Chakraborty R. & Dutta A. (2016). Role of fermentation in improving nutritional quality of soybean meal-a review. Asian-Australasian Journal of Animal Sciences. 29(11): 1523-1529.

100. Nadir N. S., Afsheen A. & Shah A. U. Q. (2013). Mutational analysis and characterization of dextran synthesizing enzyme from wild and mutant strain of Leuconostoc mesenteries. Carbohydrate Polymers. 91: 209-216.

101. Niba A., Beal J., Kudi A. & Brooks P. (2009a). Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates. Tropical Animal Health and Production. 41(7): 1393-1407.

102. Niba A., Beal J., Kudi A. & Brooks P. (2009b). Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. African Journal of Biotechnology. 8(9): 1758-1767.

103. Nicolás-Santiago D., Regalado-González C., García-Almendárez B., Fernández F. J., Téllez-Jurado A. & Huerta-Ochoa S. (2006). Physiological, morphological and mannanase production studies on Aspergillus niger uam-gs1 mutants. Electronic Journal of Biotechnology. 9(1): 50-60.

104. Nielsen, K. F., Mogensen, J. M., Johansen, M., Larsen, T. O., & Frisvad, J. C. (2009). Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Analytical and bioanalytical chemistry. 395(5): 1225-1242.

105. Noblet J., & Perez J. M. (1993). Prediction of digestibility of nutrients and energy values of pig diets from chemical analysis. Journal of animal science. 71(12): 3389-3398.

106. Oboh G. & Akindahunsi A. (2003). Biochemical changes in cassava products (flour & gari) subjected to Saccharomyces cerevisae solid media fermentation. Food Chemistry. 82(4): 599-602.

107. Olukunle O. F. & Ajayi O. E. (2018). Screening Wild and Mutant Strains of Aspergillus flavus and Aspergillus niger Isolated from Plantain Stalks for Amylase Production. Jordan Journal of Biological Sciences. 11(5): 557-562.

108. Pandey A. (1992). Recent process developments in solid-state fermentation. Process Biochemistry. 27(2): 109-117.

109. Pandey A., Selvakumar P., Soccol C. R. & Nigam P. (1999). Solid state fermentation for the production of industrial enzymes. Current Science. 149-162.

110. Pandey A., Soccol C.R., Nigam P., Soccol V.T., Vandenberghe L.P.S. & Mohan R. (2000). Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Bioresour Technol. 74: 81–87.

111. Parbat R. & Singhal B. (2011). Production of Glucoamylase by Aspergillus oryzae UnderSolid State Fermentation Using Agro Industrial Products. International Journal of Microbiology Research. 2(3): 204-207.

112. Park Y., Kang S., Lee J., Hong S. & Kim S. (2002). Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Applied Microbiology and Biotechnology. 58(6): 761-766.

113. Pariza, M. W., & Johnson, E. A. (2001). Evaluating the safety of microbial enzyme

preparations used in food processing: update for a new century. Regulatory Toxicology and Pharmacology. 33(2): 173-186.

114. Pathak S. S., Sandhu S. S. & Rajak R. (2015). Mutation Studies on Fungal Α- glucoamylase: A Review. International Journal of Pharma and Bio Sciences. 5(2): 297-308.

115. Pazarlioğlu N. K., Sariişik M. & Telefoncu A. (2005). Treating denim fabrics with immobilized commercial cellulases. Process Biochemistry. 40(2): 767-771.

116. Pedersen C. & Stein H. (2010). Effects of liquid and fermented liquid feeding on energy, dry matter, protein and phosphorus digestibility by growing pigs. Livestock Science. 134(1-3): 59-61.

117. Peinado J., Medel P., Fuentetaja A. & Mateos G. (2008). Influence of sex and castration of females on growth performance and carcass and meat quality of heavy pigs destined for the dry-cured industry. Journal of Animal Science. 86(6): 1410- 1417.

118. Piao J., Tian J., Kim B., Choi Y. I., Kim Y. Y. & Han I. K. (2004). Effects of sex and market weight on performance, carcass characteristics and pork quality of market hogs. Asian-Australasian Journal of Animal Sciences. 17(10): 1452-1458.

119. Prabakaran M., Thennarasu V., Mangala R. A., Bharathidasan R., Chandrakala N. & Mohan N. (2009). Comparative studies on the enzyme activities of wild and mutant fungal strains isolated from sugarcane field. Indian Journal of Science and Technology. 2(11): 46-49.

120. Raju E., Divakar G., Swetha C., Geetha J. & Satish P. (2012). Strain improvement of Aspergillus niger for glucoamylase by physical and chemical mutagens. International Research Journal of Pharmaceutical and Applied Sciences. 2: 79-91.

121. Reddy G. P. K., Sridevi A., Kumar K. D., Ramanjaneyulu G., Ramya A., Kumari

B. S. & Reddy B. R. (2017). Strain Improvement of Aspergillus niger for the Enhanced Production of Cellulase in Solid State Fermentation. Microbial Biotechnology. Apple Academic Press. 10: 201-218.

122. Rotaru I. (2013). Pork and pork fat quality depending on the genotype and body weight at slaughtering. Stiinta agricola (Republic of Moldova). 115: 70-77.

123. Scholten R. H. J., Van der Peet-Schwering C. M. C., Hartog L. A., Balk M., Schrama J. W & Verstegen W. M. A. (2002). Fermented wheat in liquid diets: effects on gastrointestinal characteristics in weanling piglets. Journal of Animal

Science. 80: 1179-1186.

124. Schuster E., Dunn-Coleman N., Frisvad J. C. & Van Dijck P. W. (2002). On the safety of Aspergillus niger-a review. Applied microbiology and biotechnology. 59(4): 426-435.

125. Shafique S., Bajwa R. & Shafique S. (2011). Strain improvement in Trichoderma viride through mutation for overexpression of cellulase and characterization of mutants using random amplified polymorphic DNA (RAPD). African Journal of Biotechnology. 10(84): 19590-19597.

126. Sharada R., Venkateswarlu G., Venkateshwar S. & Rao M. A. (2013). Production of cellulase-Review. International Journal of Pharmaceutical, Chemical & Biological Sciences. 3(4): 1070-1090.

127. Shimelis E. A. & Rakshit S. K. (2008). Influence of natural and controlled fermentations on alpha-galactosides, anti-nutrients and protein digestibility of beans (Phaseolus vulgaris L.). International Journal of Food Science & Technology. 43: 658-665.

128. Shrivastava B., Thakur S., Khasa Y. P., Gupte A., Puniya A. K. & Kuhad R. C. (2011). White-rot fungal conversion of wheat straw to energy rich cattle feed. Biodegradation. 22(4): 823-831.

129. Singh R., Kapoor V. & Kumar V. (2011). Influence of carbon and nitrogen sources on the α-amylase production by a newly isolated thermophilic Streptomyces sp. MSC702 (MTCC 10772). Asian Journal of Biotechnology. 3: 540-553.

130. Singh S., Sharma V., Soni M. & Das S. (2011). Biotechnological applications of industrially important amylase enzyme. International Journal of Pharma and Bio Sciences. 2: 486-496.

131. Singh S., Sharma V., Soni M. L. & Sinha S. (2013). Effect of UV induced mutation on amylase producing potential of Bacillus subtilis (2620). International Journal of Pharma and Bio Sciences. 4: 62-68.

132. Singhania R. R., Patel A. K., Soccol C. R. & Pandey A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal. 44(1): 13-18.

133. Suganthi R., Benazir J., Santhi R., Ramesh Kumar V., Hari A., Meenakshi N., Nidhiya K., Kavitha G. & Lakshmi R. (2011). Amylase production by Aspergillus niger under solid state fermentation using agroindustrial wastes. International Journal of Engineering Science and Technology. 3(2): 1756-1763.

134. Subramaniyam R. & Vimala R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. International Journal of Natural Sciences. 3(3): 480-486.

135. Sukumaran R. K., Singhania R. R. & Pandey A. (2005). Microbial cellulases- production, applications and challenges. 64: 832-844.

136. Svensson B. & Søgaard M. (1993). Mutational analysis of glycosylase function. Journal of Biotechnology. 29(1-2): 1-37.

137. Tamang J. P., Shin D.-H., Jung S.-J. & Chae S.-W. (2016). Functional properties of microorganisms in fermented foods. Frontiers in microbiology. 7 (578): 1-13.

138. Te P. M., Keuning E., Hulsegge B., Hoving-Bolink A., Evans G. & Mulder H. (2010). Longissimus muscle transcriptome profiles related to carcass and meat quality traits in fresh meat Pietrain carcasses. Journal of Animal Science. 88(12): 4044-4055.

139. Tengerdy R. & Szakacs G. (2003). Bioconversion of lignocellulose in solid substrate fermentation. Biochemical Engineering Journal. 13(2): 169-179.

140. Tweyongyere R. & Katongole I. (2002). Cyanogenic potential of cassava peels and their detoxification for utilization as livestock feed. Veterinary and Human Toxicology. 44(6): 366-369.

141. Ubalua A. (2007). Cassava wastes: treatment options and value addition alternatives. African Journal of Biotechnology. 6(18): 2065-2073.

142. Varalakshmi K., Kumudini B., Nandini B., Solomon J., Suhas R., Mahesh B. & Kavitha A. (2009). Production and Characterization of α-Amylase from Aspergillus niger JGI 24 Isolated in Bangalore. Polish Journal of Microbiology. 58(1): 29-36.

143. Vardhini R. S., Naik B. R., Neelima M., & Ramesh B. (2013). Screening and production of α-amylase from Aspergillus niger using zero, value material for solid state fermentation. International Journal of Pharmacy and Pharmaceutical Sciences. 5(1): 55-60.

144. Vittaladevaram V. (2017). Fermentative Production of Microbial Enzymes and their Applications: Present status and future prospects. Journal of Applied Biology & Biotechnology Vol. 5(04): 090-094.

145. Vlasenko E. Y., Castellanos O. & Sinitsyn A. (1993). Susceptibility of different cellulose containing materials to hydrolysis by cellulolytic enzymes. Prikl. Biokhim. Mikrobiol. 29: 834-843.

Xem tất cả 197 trang.

Ngày đăng: 14/02/2023
Trang chủ Tài liệu miễn phí