Biểu Đồ Hype Cycle Cho Vận Hành Cung Cấp Dịch Vụ Truyền Thông 2019


Để hiểu rõ sự khác biệt giữa SDN và mạng truyền thống, chúng ta sẽ xem xét trên 2 khía cạnh: kiến trúc và tính năng của chúng.

1.2.1. Về kiến trúc

Đối với hệ thống mạng truyền thống, các thiết bị mạng lớp 2 và lớp 3 phải đảm nhận nhiều chức năng để đảm bảo hoạt động, ví dụ các chức năng của Layer switch hiện nay như VLAN, Spanning tree, Quality of Service, Security… và đa số các thiết bị mạng và các giao thức này hoạt động độc lập với nhau vì mỗi nhà sản xuất thiết bị cung cấp các giải pháp mạng khác nhau. Điều này tạo ra sự phân mảnh đối với toàn bộ hệ thống mạng đồng thời làm giảm hiệu năng hoạt động.

Đối với mạng điều khiển bằng phần mềm SDN, việc điều khiển được tập trung tại lớp Controller Layer, các thiết bị mạng chỉ có nhiệm vụ chuyển tiếp gói tin do đó sự khác biệt giữa các nhà sản xuất sẽ không ảnh hưởng tới toàn hệ thống mạng. Điều này tương tự như sự phát triển của máy tính hiện nay, mỗi máy tính được sản xuất và cung cấp bởi các hãng khác nhau (như Dell, HP, IBM, Apple, Google...) và chạy các hệ điều hành khác nhau (như Windows, MacOS, Linux, Unix, …) nhưng đều có khả năng truy cập và sử dụng internet dựa trên giao thức mạng TCP/IP [2].

Về phía người quản trị mạng, họ không cần trực tiếp làm việc tại các thiết bị mạng để cấu hình, tích hợp vào hệ thống mà chỉ cần thông qua các API đã được cung cấp cùng với kiến thức cơ bản về TCP/IP đều có thể xây dựng ứng dụng cho toàn hệ thống mạng. Với khả năng quản lý tập trung, SDN mang lại nhiều lợi ích tuy nhiên cũng mở ra nhiều nguy cơ về bảo mật hơn so với hệ thống mạng truyền thống.

Có thể thấy sự khác biệt cơ bản (Hình 1.1) giữa mạng truyền thống và mạng SDN cụ thể qua 3 điểm sau:


Hình 1.1 - So sánh kiến trúc mạng truyền thống và SDN


Có thể bạn quan tâm!

Xem toàn bộ 102 trang tài liệu này.

Chức năng điều khiển và chức năng chuyển tiếp dữ liệu trên mạng truyền thống đều được tích hợp trong cùng một thiết bị mạng trong khi trong mạng SDN, phần điều khiển được tách riêng khỏi thiết bị mạng và được chuyển đến một thiết bị được gọi là bộ điều khiển SDN.

Chức năng thu thập và xử lý các thông tin: Đối với mạng truyền thống, chức năng này được thực hiện ở tất cả các phần tử trong mạng còn trong mạng SDN, nó được xử lý tập trung tại bộ điều khiển SDN.

Mạng truyền thống không thể được lập trình bởi các ứng dụng. Việc cấu hình các thiết bị mạng được thực hiện một cách riêng lẻ và thủ công. Trong khi đối với SDN, mạng sẽ được lập trình bởi các ứng dụng, bộ điều khiển SDN có thể tương tác đến tất cả các thiết bị trong mạng.

Phần điều khiển được tách rời và được tập trung ở bộ điều khiển SDN. Điều này có nghĩa là các thiết bị mạng ở lớp thiết bị phần cứng không cần phải hiểu và xử lý các giao thức phức tạp mà chúng chỉ nhận và vận chuyển dữ liệu theo một đường nào đó dưới sự chỉ huy của bộ điều khiển SDN. Dựa vào bộ điều khiển SDN mà các nhà khai thác và quản trị mạng có thể lập trình cấu hình trên đó thay vì phải thực hiện thủ công hàng ngàn câu lệnh cấu hình trên các thiết bị riêng lẻ. Điều này giúp triển khai các ứng dụng mới và các dịch vụ mạng một cách nhanh chóng.

1.2.2. Về tính năng

Sự khác biệt căn bản nhất giữa SDN và mạng truyền thống là SDN dựa trên phần mềm trong khi mạng truyền thống thường dựa trên phần cứng. Do dựa trên phần mềm, SDN linh hoạt hơn, cho phép người dùng kiểm soát tốt hơn và dễ dàng quản lý tài nguyên hầu như trên chỉ trên mặt phẳng điều khiển. Ngược lại, các mạng truyền thống sử dụng các bộ chuyển mạch, bộ định tuyến và cơ sở hạ tầng vật lý khác để tạo kết nối và giao tiếp trên mạng [3].

Bộ điều khiển SDN sử dụng giao diện giao tiếp với các API. Với giao diện này, các nhà phát triển ứng dụng có thể lập trình trực tiếp mạng, trái ngược với việc sử dụng các giao thức được yêu cầu bởi mạng truyền thống.

SDN cho phép người dùng sử dụng phần mềm để cung cấp các thiết bị mới thay vì sử dụng cơ sở hạ tầng vật lý, do đó, quản trị viên có thể định tuyến đường truyền, lưu lượng cũng như chủ động lập lịch cho các dịch vụ mạng. Không giống như các thiết bị chuyển mạch truyền thống, SDN còn có khả năng giao tiếp tốt hơn với các thiết bị sử dụng mạng.

Ảo hóa là điển hình cho sự khác biệt chính giữa SDN và mạng truyền thống. Khi SDN ảo hóa toàn bộ mạng, nó sẽ tạo một bản sao của mạng vật lý và cho phép cung cấp tài nguyên từ một vị trí tập trung. Ngược lại, với một mạng truyền thống, vị trí vật lý của mặt phẳng điều khiển (nằm phân tán trên các thiết bị mạng) sẽ cản trở khả năng quản trị viên có thể kiểm soát luồng lưu lượng.


Với SDN, mặt phẳng điều khiển được xây dựng dựa trên phần mềm, cho phép truy cập thông qua một thiết bị được kết nối. Quyền truy cập này cho phép quản trị viên quản lý lưu lượng từ giao diện người dùng tập trung (UI) với độ chi tiết và chính xác cao. Vị trí tập trung này cho phép người dùng kiểm soát tốt hơn cách thức hoạt động của mạng và cách cấu hình mạng. Khả năng xử lý nhanh các cấu hình mạng khác nhau từ giao diện người dùng tập trung đặc biệt có lợi thế trong việc phân tách và quản lý các node mạng.

SDN trở thành một giải pháp thay thế phổ biến cho mạng truyền thống vì nó cho phép các quản trị viên quản lý tập trung và cung cấp tài nguyên, băng thông khi cần mà không cần đầu tư thêm cơ sở hạ tầng vật lý. Mạng truyền thống đòi hỏi phần cứng mới để tăng dung lượng mạng. Mô hình cho SDN so với kết nối mạng truyền thống có thể tóm tắt đơn giản như việc với một cái thì yêu cầu nhiều thiết bị hơn để mở rộng và cái còn lại chỉ cần gõ phím và thao tác trên một màn hình!

1.3. Tìm hiểu kiến trúc của SDN

Về cơ bản, SDN được chia làm ba lớp: lớp ứng dụng (Application Layer), lớp điều khiển (Control Layer) và lớp thiết bị hạ tầng (Infrastructure Layer). Các lớp sẽ liên kết với nhau thông qua giao thức hoặc các API (Hình 1.2).


Hình 1 2 Kiến trúc SDN Lớp ứng dụng SDN là các chương trình giao tiếp với bộ 1

Hình 1.2 - Kiến trúc SDN

Lớp ứng dụng SDN là các chương trình giao tiếp với bộ điều khiển SDN thông qua các giao diện lập trình ứng dụng API, cho phép lớp ứng dụng lập trình (cấu hình) mạng (ví dụ như điều chỉnh các tham số trễ, băng thông, định tuyến, …) qua lớp điều khiển để tối ưu hoạt động của mạng lưới theo một yêu cầu cụ thể của người quản trị. Ngoài ra, các ứng dụng sẽ đưa ra mô hình trực quan về mạng lưới bằng cách thu thập thông tin từ bộ điều khiển cho các mục đích ra quyết định. Các ứng dụng này có thể bao gồm quản lý mạng, phân tích hoặc các ứng dụng kinh doanh được sử dụng để chạy các trung tâm


dữ liệu lớn. Ví dụ: Một ứng dụng phân tích có thể được xây dựng để nhận ra hoạt động mạng đáng ngờ vì mục đích bảo mật.

Lớp thiết bị hạ tầng (Infrastructure Layer) bao gồm các thiết bị mạng (thiết bị vật lý hoặc ảo hóa) thực hiện việc chuyển tiếp gói tin dưới sự điều khiển của Lớp điểu khiển. Một thiết bị mạng có thể hoạt động theo sự điều khiển của nhiều controller khác nhau, điều này giúp tăng cường khả năng ảo hóa của mạng.

Lớp điều khiển là trung tâm của kiến trúc mạng SDN. Nó cung cấp cho người quản trị tổng quát về toàn mạng, quyết định triển khai các chính sách và điều khiển toàn bộ các thiết bị trong hạ tầng mạng. Nó cung cấp một giao diện Northbound API cho việc giao tiếp với lớp ứng dụng. Thực hiện các chính sách quyết định liên quan tới định tuyến, chuyển tiếp, redirect, cân bằng tải, hoặc tương tự (Hình 1.3).


Hình 1 3 Lớp điều khiển SDN  Bên trong SDN controller chưa các module giúp quản 2

Hình 1.3 - Lớp điều khiển SDN

Bên trong SDN controller chưa các module giúp quản lý topo mạng, quản lý trạng thái, quản lý các thiết bị, quản lý các cảnh báo, tính toán đường đi ngắn nhất và cung cấp các kỹ thuật bảo mật.

SDN controller sử dụng giao điện Southbound để giao tiếp với các thiết bị lớp hạ tầng. Các giao thức phổ biến là Openflow, OVSDB, ForCES, OF-Config... Thông qua các giao thức này SDN controller có thể cấu hình và thu thập các thông tin trạng thái trên thiết bị.

Nền tảng SDN có thể sử dụng để triển khai trên nhiều mô hình khác nhau như trong các Data center, Lan, Wan, Telecom, Enterprise…

1.4. Tiềm năng ứng dụng và xu hướng triển khai

1.4.1. Đánh giá tiềm năng ứng dụng

Chúng ta sẽ phân tích tiềm năng của SDN trong tương lai bằng việc phân tích biểu đồ Hype Cycle của Gartner – một công ty nghiên cứu và tư vấn công nghệ thông tin hàng đầu thế giới.

Theo nghiên cứu của Gartner [1] SDN hiện tại đang trong quá trình thứ 2 – Đỉnh kỳ vọng (Peak of Inflated Expectations) với việc giới truyền thông đưa tin về một số sản phẩm ứng dụng SDN thành công và thất bại của các nhà cung cấp dịch vụ, các Tier 1 Operator đã đưa ra các hành động, còn hầu hết thì không hoặc chỉ đang trong giai đoạn nghiên cứu, tìm hiểu để triển khai thử nghiệm. Phần lớn các nhà cung cấp dịch vụ vẫn đang thận trọng tìm hướng tiếp cận phù hợp, chiêu mộ nhân tài và lên kế hoạch đầu tư trong tương lai (Hình 1.4).


Hình 1 4 Biểu đồ Hype Cycle cho vận hành cung cấp dịch vụ truyền thông 2019 Các 3

Hình 1.4 - Biểu đồ Hype Cycle cho vận hành cung cấp dịch vụ truyền thông 2019

Các nhà cung cấp dịch vụ truyền thông (CSP) hàng đầu đã triển khai SDN trong những năm gần đây. Các thiết bị chuyển mạch hộp trắng (white-box switches) thường được sử dụng trong triển khai SDN, chúng có thể được lập trình để sử dụng các giao thức khác nhau, như OpenFlow hoặc các biến thể khác của southbound API để tạo các kết nối định tuyến. Các CSP triển khai SDN trong các phân đoạn khác nhau trên cơ sở hạ tầng của họ tùy thuộc vào các mong muốn triển khai tập trung vào tự động hóa hoạt động của các phân đoạn này. Tuy nhiên, nhiều CSP vẫn đang theo dõi sự phát triển SDN và dự kiến sẽ mất nhiều năm trước khi triển khai SDN với quy mô lớn. Một số nhà cung cấp sản phẩm được hình thành và một số nhà cung cấp mới nổi tiếp tục phát triển công nghệ SDN. Cũng có một số cộng đồng mã nguồn mở phát triển phần mềm SDN theo cách riêng của họ. Việc thiếu các tiêu chuẩn chung, các vấn đề về khả năng tương tác đa tầng, các tính năng kiểm soát dịch vụ không đầy đủ, quá tập trung các chức năng kiểm soát và dẫn đến sự thiếu hiệu quả với lưu lượng kiểm soát và những lo ngại về việc tuân thủ và bảo mật của các bộ điều khiển SDN tập trung là những rào cản lớn đối với việc áp dụng SDN quy mô lớn. Bất chấp những rào cản này, các dịch vụ truyền thông đang tiến lên với việc triển khai SDN vì lợi ích của SDN vượt xa các vấn đề tiềm ẩn nói trên.

Theo khuyến nghị của Gartner, lãnh đạo đơn vị kinh doanh công nghệ không nên bị cuốn vào sự cường điệu xung quanh SDN. Nhưng đồng thời, họ không nên bỏ qua công nghệ đột phá này bởi nó có thể biến đổi hoàn toàn kiến trúc mạng lưới trong tương lai. CSP nên tập trung giải quyết các vấn đề cụ thể bằng công nghệ SDN. Trong ngắn hạn,


các CSP nên có được kinh nghiệm với các công nghệ và phương pháp tiếp cận mới đối với thiết kế và vận hành mạng bằng cách triển khai nó trong các lĩnh vực không quan trọng. Điều quan trọng đối với các CSP là phân bổ thời gian và nguồn lực để đánh giá SDN và các công nghệ liên quan khác như các kiến trúc mạng tự động mã nguồn mở, chuyển mạch phân tán, các hệ điều hành mạng mã nguồn mở và các nhà cung cấp hiện tại. Những cách tiếp cận mới này có thể có tác động cơ bản đến các mối quan hệ của nhà cung cấp và mô hình kinh doanh trong mạng lưới và các thị trường liên quan. Khi các CSP xây dựng các trung tâm dữ liệu thế hệ tiếp theo của họ để hỗ trợ ảo hóa các chức năng mạng, họ nên đánh giá công nghệ SDN về khả năng ứng dụng trong các trung tâm dữ liệu mới. CSP cũng nên đánh giá công nghệ SDN trong quá trình xây dựng mạng thế hệ tiếp theo của họ. CSP có cơ hội triển khai SDN trong việc triển khai mạng 5G, mạng dành riêng cho IoT và mạng 4G tiên tiến. CSP cũng có thể triển khai công nghệ SDN trong mạng truyền tải cáp quang thế hệ tiếp theo của họ bằng các giải pháp SDN truyền tải. Một mạng lưới truyền tải cáp quang mới là cần thiết để hỗ trợ các nhu cầu backhaul/front-haul để triển khai các hệ thống điều khiển lưu lượng LTE, 5G, Edge, IoT và drone tiên tiến. CSP đã triển khai các sản phẩm và dịch vụ SD-WAN sử dụng một số khái niệm công nghệ SDN.

1.4.2. Xu hướng triển khai

Trên thực tế, SDN đang là xu hướng công nghệ quan trọng mà tất cả các Tier 1 Operator đang theo đuổi (và theo Gartner chỉ ra rằng trong 05 năm nữa SDN sẽ chín muồi). Một trong những môi trường thuận lợi và dễ triển khai SDN, đặc biệt là với Cloud Data Center. Hiện nay các nhà cung cấp nội dung lớn như (Google, Facebook, Amazon) đã thực hiện sử dụng SDN trong các Data Center. Các Tier 1 Operator đã từng bước đưa SDN vào Data Center và thực hiện ảo hóa các thành phần điều khiển như AT&T đưa ra mục tiêu ảo hóa được 75% các phần tử trong mạng vào năm 2020.

Hình 1 5 Dự báo quy mô thị trường SDN 2019 2025 Global Market Insights dự báo quy mô 4

Hình 1.5 - Dự báo quy mô thị trường SDN 2019-2025


Global Market Insights dự báo quy mô thị trường SDN được ước tính lên đến 100 tỷ USD vào năm 2025 và ước tính sẽ tăng trưởng với tốc độ hơn 40% trong khoảng thời gian dự báo 2019-2025 (Hình 1.5) [4].

Những nỗ lực tích cực của các nhà cung cấp dịch vụ viễn thông để giải quyết các thách thức của mạng truyền thống đang phát triển vô số con đường mới cho thị trường mạng được xác định bằng phần mềm. Trong năm năm qua, các dịch vụ viễn thông cung cấp đang ráo riết tìm kiếm các công nghệ mới phát sinh từ các nỗ lực chung của cộng đồng và ngành công nghiệp nguồn mở. Họ đã thử nghiệm các giải pháp từ dự án nền tảng mở cho dự án NFV (OPNFV), hệ điều hành mạng mở (ONOS) và các dự án như OpenDaylight. Những nỗ lực này thúc đẩy việc áp dụng các công nghệ mạng thế hệ tiếp theo như SDN để cải thiện hiệu quả, tính linh hoạt, khả năng mở rộng và khả năng lập trình của mạng viễn thông.

Việc thiếu các tiêu chuẩn để kiểm soát toàn bộ thiết bị đang cản trở việc áp dụng các công nghệ SDN. Khung OpenFlow là tiêu chuẩn được sử dụng phổ biến nhất trong bối cảnh SDN. Khung có một giao thức cập nhật bảng chuyển tiếp đơn hướng, xác định trạng thái của các thiết bị được kết nối. Tuy nhiên, khung OpenFlow không thể thực hiện thiết lập thiết bị cơ bản, hạn chế khả năng tương thích với các công nghệ mạng truyền thống hiện có. Hơn nữa, việc chưa thể cung cấp khả năng điều khiển thiết bị đầy đủ (điều kiện tiên quyết cho hầu hết các hệ thống mạng) đang hạn chế sự tăng trưởng của thị trường SDN.


CHƯƠNG 2: NGHIÊN CỨU, THỬ NGHIỆM SDN CỦA CÁC HÃNG VÀ

MÃ NGUỒN MỞ

2.1. Nghiên cứu các giải pháp ứng dụng của Nokia và Juniper

Phương pháp nghiên cứu, thực nghiệm dựa trên nguyên tắc so sánh, đánh giá và lựa chọn giải pháp của các hãng, giải pháp mã nguồn mở từ đó đưa ra nhận định lựa chọn giải pháp phù hợp với hiện trạng, nhu cầu mạng truyền tải trong các Telco Cloud Data Center đảm bảo tính khả thi về kỹ thuật cũng như hiệu quả về chi phí.

Nokia và Juniper là 2 hãng công nghệ mạng hàng đầu trên thế giới, việc lựa chọn nghiên cứu, thử nghiệm, đánh giá giải pháp SDN theo định hướng này giúp đội dự án tiếp cận nhanh với công nghệ cũng như có cái nhìn khách quan trong xu thế phát triển chung của giải pháp ứng dụng này trên thế giới. Bản thân tác giả là người chủ trì tìm hiểu, nghiên cứu giải pháp và đề xuất đưa vào triển khai theo lộ trình này của dự án.

Trong phần này, tác giả sẽ trình bày chi tiêt kết quả đạt được trong quá trình nghiên cứu cấu trúc, tính năng giải pháp ứng dụng SDN của Nokia và Juniper.

2.1.1. Nghiên cứu giải pháp SDN của Nokia – Hệ thống Nuage

Xuất phát từ ý tưởng của SDN là tách mặt phẳng điều khiển khỏi mặt phẳng dữ liệu và cung cấp một mặt phẳng quản lý duy nhất thông qua các API, Nokia đã phát triển nền tảng Nuage triển khai theo mô hình tương tự (Hình 2.1) [5]. Nuage tạo ra một nền tảng dịch vụ ảo hóa VSP [6]. VSP thực hiện việc triển khai, xử lý các mặt phẳng của mô hình SDN như sau:

Hình 2.1 - Kiến trúc hệ thống Nuage Nokia

Mặt phẳng quản lý Nuage Virtualized Services Directory (VSD) và Hệ thống quản lý đám mây CMS (OpenStack, CloudStack, v.v.) có chức năng quản lý VSP của Nokia, nó định nghĩa và giám sát các policy của mạng lưới. Nó bao gồm một kiến trúc VSD và một giao diện web thân thiện người dùng để cấu hình và giám sát VSD.

Mặt phẳng điều khiển: Nuage Virtualized Services Controller (VSC) có chức năng tự động phát hiện các thông số mạng khác nhau của các VM truy nhập vào các

Xem tất cả 102 trang.

Ngày đăng: 22/09/2023
Trang chủ Tài liệu miễn phí