Phụ lục 6. Kết quả ước lượng mô hình GARCH
Variable
Variable
CoefficientProb. Variable Coefficient
Variance Equation
Variance Equation
0
0
0
RBVH
RCTG
RDIG
Coefficient
Prob.
Prob.
C
-0.00025
0.8031
C
-0.00141
0.0246
C
-0.0025
0.0151
AR(1)
0.142602
0.0000
AR(3)
-0.5725
0.0000
AR(1)
0.154938
0.0007
MA(3)
0.531944
0.0000
Variance Equation
C
0.000151
0.0041
C
4.00E-05
0.0000
C
0.000225
0.000
RESID(-1)^2
0.222133
0.0007
RESID(-1)^2
0.226619
0.0000
RESID(-1)^2
0.461653
0.000
GARCH(-1)
0.601012
0.0000
GARCH(-1)
0.733516
0.0000
GARCH(-1)
0.433396
0.000
REIB | RHPG | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | -0.00063 | 0.3334 | C | -0.00057 | 0.3663 | C | -0.00216 | 0.0325 |
AR(1) | 0.085453 | 0.0036 | AR(1) | 0.125774 | 0.0001 | |||
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 5.40E-05 | 0.0000 | C | 0.000115 | 0.0000 | C | 0.000725 | 0.0000 |
RESID(-1)^2 | 0.212044 | 0.0000 | RESID(-1)^2 | 0.240006 | 0.0000 | RESID(-1)^2 | 0.177117 | 0.0000 |
GARCH(-1) | 0.702183 | 0.0000 | GARCH(-1) | 0.44471 | 0.0000 |
Có thể bạn quan tâm!
- Kết Quả Hồi Quy Hàm Đồng Vượt Ngưỡng Theo Bg Và Biến Trễ
- Lược Đồ Tương Quan Của Các Chuỗi Lợi Suất
- Kết Quả Ước Lượng Hình Garch-Copula Động Của Các Chuỗi Lợi Suất Với Rvnindex
- Một số mô hình đo lường rủi ro trên thị trường chứng khoán Việt Nam - 25
Xem toàn bộ 209 trang tài liệu này.
RIJC | RMBB | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | -0.00116 | 0.3807 | C | -0.00275 | 0.0191 | C | -0.00108 | 0.2284 |
AR(1) | 0.215811 | 0.0000 | AR(1) | 0.09949 | 0.0439 | |||
AR(4) | 0.085371 | 0.0058 | ||||||
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 0.000109 | 0.0672 | C | 0.000136 | 0.0066 | C | 3.70E-05 | 0.0213 |
RESID(-1)^2 | 0.104982 | 0.0089 | RESID(-1)^2 | 0.355621 | 0.0000 | RESID(-1)^2 | 0.223905 | 0.0048 |
GARCH(-1) | 0.772676 | 0.0000 | GARCH(-1) | 0.59809 | 0.0000 | GARCH(-1) | 0.711445 | 0.0000 |
ROGC | RPVF | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | 0.000885 | 0.3483 | C | -0.00205 | 0.117 | C | -0.00111 | 0.3176 |
AR(1) | 0.174102 | 0.0000 | AR(1) | 0.125966 | 0.0016 | AR(1) | 0.156312 | 0.0000 |
AR(7) | 0.070918 | 0.0242 | ||||||
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 6.35E-05 | 0.0027 | C | 5.71E-05 | 0.1968 | C | 6.55E-05 | 0.0917 |
RESID(-1)^2 | 0.164602 | 0.0002 | RESID(-1)^2 | 0.105937 | 0.0441 | RESID(-1)^2 | 0.118272 | 0.0068 |
GARCH(-1) | 0.726453 | 0.0000 | GARCH(-1) | 0.834101 | 0.0000 | GARCH(-1) | 0.812692 | 0.0000 |
RVCB | RCII | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | -0.00036 | 0.6801 | C | -0.00145 | 0.0159 | C | -0.00074 | 0.284 |
AR(1) | 0.153983 | 0.0000 | AR(1) | 0.033536 | 0.3723 | AR(1) | 0.141344 | 0.0000 |
AR(4) | 0.052831 | 0.0714 | MA(3) | -0.1169 | 0.0011 | |||
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 6.85E-05 | 0.0006 | C | 0.000154 | 0.0000 | C | 3.09E-05 | 0.0002 |
RESID(-1)^2 | 0.14586 | 0.0000 | RESID(-1)^2 | 0.299202 | 0.0000 | RESID(-1)^2 | 0.227538 | 0.0000 |
GARCH(-1) | 0.76254 | 0.0000 | GARCH(-1) | 0.396695 | 0.0000 | GARCH(-1) | 0.758045 | 0.0000 |
RGMD | RKDC | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | -0.0002 | 0.8004 | C | -0.00214 | 0.0033 | C | -0.00141 | 0.0355 |
AR(1) | 0.065206 | 0.0000 | AR(1) | 0.185913 | 0.0000 | AR(1) | 0.163562 | 0.0000 |
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 0.000126 | 0.0000 | C | 4.49E-05 | 0.0000 | |||
RESID(-1)^2 | 0.334762 | 0.0000 | RESID(-1)^2 | 0.24789 | 0.0000 | RESID(-1)^2 | 0.014368 | 0.0000 |
GARCH(-1) | 0.603916 | 0.0000 | GARCH(-1) | 0.715999 | 0.0000 | GARCH(-1) | 0.985632 | 0.0000 |
RHNX | RVNINDEX | |||||||
Variable | Coefficient | Prob. | Variable | Coefficient | Prob. | Variable | Coefficient | Prob. |
C | -0.00156 | 0.0372 | C | -0.00054 | 0.3195 | C | -0.00038 | 0.427 |
AR(1) | 0.121313 | 0.0000 | AR(1) | 0.145726 | 0.0000 | AR(1) | 0.246159 | 0.0000 |
Variance Equation | Variance Equation | Variance Equation | ||||||
C | 5.61E-05 | 0.0002 | C | 2.86E-05 | 0.0000 | C | 1.11E-05 | 0.0006 |
RESID(-1)^2 | 0.239319 | 0.0000 | RESID(-1)^2 | 0.220188 | 0.0000 | RESID(-1)^2 | 0.175032 | 0.0000 |
GARCH(-1) | 0.728945 | 0.0000 | GARCH(-1) | 0.738369 | 0.0000 | GARCH(-1) | 0.788232 | 0.0000 |
Phụ lục 7. Kết quả ước lượng mô hình CCC
Các phương trình trung bình:
RCII = -0.00125401047294+0.0839002961242*RCII(-1) +e RFPT = -0.00160353921984+0.0605581155104*RFPT(-1)+e RGMD = -0.00253729651678+0.0860966474515*RGMD(-1)+e RKDC = -0.00101797052893+0.10143705969*RKDC(-1)+e RITA = -0.00207396143231+0.078632313595*RITA(-1)+e
RVNINDEX=-0.000735170643729+0.119094618122*RVNINDEX(-1)+e
Các phương trình phương sai:
GARCH1 = 0.000105455532449 + 0.278904449294*RESID1(-1)^2 + 0.664381961928*GARCH1(-1) Prob. (0.000) (0.000) (0.000)
GARCH2 = 9.2133004015e-05 + 0.325559387907*RESID2(-1)^2 + 0.576824849594*GARCH2(-1) Prob. (0.000) (0.000) (0.000)
GARCH3 = 8.41890841123e-05 + 0.292234766559*RESID3(-1)^2 + 0.672738965563*GARCH3(-1) Prob. (0.000) (0.000) (0.000)
GARCH4 = 6.4231402351e-05 + 0.265810362863*RESID4(-1)^2 + 0.691411014647*GARCH4(-1) Prob. (0.000) (0.000) (0.000)
GARCH5 = 0.000132476015096 + 0.253438220487*RESID5(-1)^2 + 0.667809573438*GARCH5(-1) Prob. (0.000) (0.000) (0.000)
GARCH6 = 3.73793471141e-05 + 0.174654311498*RESID6(-1)^2 + 0.748735668436*GARCH6(-1)
Prob. (0.000) (0.000) (0.000)
Các phương trình hiệp phương sai:
COV1_2 = 0.498282334165*SQRT(GARCH1*GARCH2) Prob. (0.000)
COV1_3 = 0.526742671525*SQRT(GARCH1*GARCH3) Prob. (0.000)
COV1_4 = 0.445011987939*SQRT(GARCH1*GARCH4) Prob. (0.000)
COV1_5 = 0.51451364586*SQRT(GARCH1*GARCH5) Prob. (0.000)
COV1_6 = 0.660144651063*SQRT(GARCH1*GARCH6) Prob. (0.000)
COV2_3 = 0.554149302091*SQRT(GARCH2*GARCH3) Prob. (0.000)
COV2_4 = 0.4600654794*SQRT(GARCH2*GARCH4) Prob. (0.000)
COV2_5 = 0.497339740627*SQRT(GARCH2*GARCH5) Prob. (0.000)
COV2_6 = 0.725294839971*SQRT(GARCH2*GARCH6) Prob. (0.000)
COV3_4 = 0.472885962835*SQRT(GARCH3*GARCH4) Prob. (0.000)
COV3_5 = 0.591013694372*SQRT(GARCH3*GARCH5) Prob. (0.000)
COV3_6 = 0.727263011566*SQRT(GARCH3*GARCH6) Prob. (0.000)
COV4_5 = 0.45871954421*SQRT(GARCH4*GARCH5) Prob. (0.000)
COV4_6 = 0.614401341392*SQRT(GARCH4*GARCH6) Prob. (0.000)
COV5_6 = 0.705111683562*SQRT(GARCH5*GARCH6) Prob. (0.000)
Phụ lục 8. Đồ thị các chuỗi phương sai có điều kiện
.0020
.0016
.0012
.0008
.0004
.0000
garchrvnindex
250 500 750 1000 1250
.005
.004
.003
.002
.001
.000
garchrhnx
250 500 750 1000 1250
.05
.04
.03
.02
.01
.00
garchrita
250 500 750 1000 1250
Conditional variance
Conditional variance
Conditional variance
.035
.030
.025
.020
.015
.010
.005
garchrcii
.05
.04
.03
.02
.01
garchrfpt
.016
.014
.012
.010
.008
.006
.004
.002
garchrgmd
.000
.0024
.0020
.0016
.0012
.0008
.0004
.0000
.06
.05
.04
.03
250 500 750 1000 1250
Conditional variance
garchrkdc
250 500 750 1000 1250
Conditional variance
garchrdig
.00
.0018
.0016
.0014
.0012
.0010
.0008
.0006
.0004
.0002
.0024
.0020
.0016
.0012
250 500 750 1000 1250
Conditional variance
garchrbvh
100 200 300 400 500 600 700 800
Conditional variance
garchrdpm
.000
.008
.007
.006
.005
.004
.012
.010
.008
.006
.004
.002
.000
250 500 750 1000 1250
Conditional variance
garchrctg
100 200 300 400 500 600 700 800
Conditional variance
garchreib
.02
.01
.00
100 200 300 400 500 600 700 800
.0008
.0004
.0000
250 500 750 1000 1250
.003
.002
.001
.000
100 200 300 400 500 600 700
Conditional variance
Conditional variance
Conditional variance
.024
.020
.016
.012
.008
.004
.000
garchrhpg
250 500 750 1000 1250
.006
.005
.004
.003
.002
.001
.000
garchrhsg
250 500 750 1000
.006
.005
.004
.003
.002
.001
.000
garchrhsg
250 500 750 1000
Conditional variance
Conditional variance
Conditional variance
.0024
garchrmbb
.0020
garchrmsn
.0035
garchrogc
.0020
.0016
.0012
.0008
.0004
.0016
.0012
.0008
.0004
.0030
.0025
.0020
.0015
.0010
.0005
.0000
.0040
.0035
.0030
.0025
.0020
.0015
.0010
.0005
50 100 150 200 250
Conditional variance
garchrpvf
.0000
.0040
.0035
.0030
.0025
.0020
.0015
.0010
.0005
100 200 300 400 500 600 700
Conditional variance
garchrsbt
.0000
.007
.006
.005
.004
.003
.002
.001
100 200 300 400 500 600
Conditional variance
garchrvcb
.0000
250 500 750 1000
.0000
250 500 750 1000
.000
100 200 300 400 500 600 700 800
Conditional variance
Conditional variance
Conditional variance
Phụ lục 9. Một số chương trình Matlab
% Ước lượng VaR và ES bằng mô hình GARCH-EVT-copula. load('data')
T = size(data,1); nIndices = size(data,2); for i=1:nIndices
spec(i) = garchset('Distribution' , 'T' , 'Display', 'off', ...
'VarianceModel', 'GARCH', 'P', 1, 'Q', 1, 'R',0)
end
residuals = NaN(T, nIndices); % preallocate storage sigmas = NaN(T, nIndices);
for i = 1:nIndices
[spec(i) , errors, LLF, ...
residuals(:,i), sigmas(:,i)] = garchfit(spec(i), data(:,i)); end
residuals = residuals ./ sigmas;
nPoints = 200; % # of sampled points of kernel-smoothed CDF tailFraction = 0.1; % Decimal fraction of residuals allocated to each tail OBJ = cell(nIndices,1); % Cell array of Pareto tail objects
for i = 1:nIndices
OBJ{i} = paretotails(residuals(:,i), tailFraction, 1 - tailFraction, 'kernel'); end
U = zeros(size(residuals)); for i = 1:nIndices
U(:,i) = OBJ{i}.cdf(residuals(:,i)); % transform margin to uniform end
%[R, DoF] = copulafit('t', U, 'Method', 'ApproximateML'); % fit the copula RHOHAT = copulafit('Gaussian',U);%fit the copula-Gaussian
s = RandStream.getDefaultStream(); reset(s)
nTrials = 5000; % # of independent random trials horizon = 1; % VaR forecast horizon
Z = zeros(horizon, nTrials, nIndices); % standardized residuals array
%U = copularnd('t', R, DoF, horizon * nTrials); % t copula simulation
U = copularnd('Gaussian', RHOHAT, horizon * nTrials);% Gaussian copula
%simulation
for j = 1:nIndices
Z(:,:,j) = reshape(OBJ{j}.icdf(U(:,j)), horizon, nTrials); end
preResidual = residuals(end,:) .* sigmas(end,:); % presample model residuals preSigma = sigmas(end,:); % presample volatilities
preReturn = data(end,:); % presample returns simulatedReturns = zeros(horizon, nTrials, nIndices);
for i = 1:nIndices