Một số mô hình đo lường rủi ro trên thị trường chứng khoán Việt Nam - 24


Phụ lục 6. Kết quả ước lượng mô hình GARCH


Variable

Variable

CoefficientProb. Variable Coefficient

Variance Equation

Variance Equation

0

0

0

RBVH

RCTG

RDIG

Coefficient

Prob.

Prob.

C

-0.00025

0.8031

C

-0.00141

0.0246

C

-0.0025

0.0151

AR(1)

0.142602

0.0000

AR(3)

-0.5725

0.0000

AR(1)

0.154938

0.0007

MA(3)

0.531944

0.0000

Variance Equation

C

0.000151

0.0041

C

4.00E-05

0.0000

C

0.000225

0.000

RESID(-1)^2

0.222133

0.0007

RESID(-1)^2

0.226619

0.0000

RESID(-1)^2

0.461653

0.000

GARCH(-1)

0.601012

0.0000

GARCH(-1)

0.733516

0.0000

GARCH(-1)

0.433396

0.000


RDPM

REIB

RHPG

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

-0.00063

0.3334

C

-0.00057

0.3663

C

-0.00216

0.0325

AR(1)

0.085453

0.0036



AR(1)

0.125774

0.0001




Variance Equation

Variance Equation

Variance Equation

C

5.40E-05

0.0000

C

0.000115

0.0000

C

0.000725

0.0000

RESID(-1)^2

0.212044

0.0000

RESID(-1)^2

0.240006

0.0000

RESID(-1)^2

0.177117

0.0000

GARCH(-1)

0.702183

0.0000

GARCH(-1)

0.44471

0.0000




Có thể bạn quan tâm!

Xem toàn bộ 209 trang tài liệu này.

Một số mô hình đo lường rủi ro trên thị trường chứng khoán Việt Nam - 24


RHSG

RIJC

RMBB

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

-0.00116

0.3807

C

-0.00275

0.0191

C

-0.00108

0.2284

AR(1)

0.215811

0.0000

AR(1)

0.09949

0.0439




AR(4)

0.085371

0.0058



Variance Equation

Variance Equation

Variance Equation

C

0.000109

0.0672

C

0.000136

0.0066

C

3.70E-05

0.0213

RESID(-1)^2

0.104982

0.0089

RESID(-1)^2

0.355621

0.0000

RESID(-1)^2

0.223905

0.0048

GARCH(-1)

0.772676

0.0000

GARCH(-1)

0.59809

0.0000

GARCH(-1)

0.711445

0.0000


RMSN

ROGC

RPVF

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

0.000885

0.3483

C

-0.00205

0.117

C

-0.00111

0.3176

AR(1)

0.174102

0.0000

AR(1)

0.125966

0.0016

AR(1)

0.156312

0.0000



AR(7)

0.070918

0.0242

Variance Equation

Variance Equation

Variance Equation

C

6.35E-05

0.0027

C

5.71E-05

0.1968

C

6.55E-05

0.0917

RESID(-1)^2

0.164602

0.0002

RESID(-1)^2

0.105937

0.0441

RESID(-1)^2

0.118272

0.0068

GARCH(-1)

0.726453

0.0000

GARCH(-1)

0.834101

0.0000

GARCH(-1)

0.812692

0.0000


RSBT

RVCB

RCII

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

-0.00036

0.6801

C

-0.00145

0.0159

C

-0.00074

0.284

AR(1)

0.153983

0.0000

AR(1)

0.033536

0.3723

AR(1)

0.141344

0.0000

AR(4)

0.052831

0.0714

MA(3)

-0.1169

0.0011


Variance Equation

Variance Equation

Variance Equation

C

6.85E-05

0.0006

C

0.000154

0.0000

C

3.09E-05

0.0002

RESID(-1)^2

0.14586

0.0000

RESID(-1)^2

0.299202

0.0000

RESID(-1)^2

0.227538

0.0000

GARCH(-1)

0.76254

0.0000

GARCH(-1)

0.396695

0.0000

GARCH(-1)

0.758045

0.0000


RFPT

RGMD

RKDC

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

-0.0002

0.8004

C

-0.00214

0.0033

C

-0.00141

0.0355

AR(1)

0.065206

0.0000

AR(1)

0.185913

0.0000

AR(1)

0.163562

0.0000




Variance Equation

Variance Equation

Variance Equation

C

0.000126

0.0000

C

4.49E-05

0.0000


RESID(-1)^2

0.334762

0.0000

RESID(-1)^2

0.24789

0.0000

RESID(-1)^2

0.014368

0.0000

GARCH(-1)

0.603916

0.0000

GARCH(-1)

0.715999

0.0000

GARCH(-1)

0.985632

0.0000


RITA

RHNX

RVNINDEX

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

Variable

Coefficient

Prob.

C

-0.00156

0.0372

C

-0.00054

0.3195

C

-0.00038

0.427

AR(1)

0.121313

0.0000

AR(1)

0.145726

0.0000

AR(1)

0.246159

0.0000




Variance Equation

Variance Equation

Variance Equation

C

5.61E-05

0.0002

C

2.86E-05

0.0000

C

1.11E-05

0.0006

RESID(-1)^2

0.239319

0.0000

RESID(-1)^2

0.220188

0.0000

RESID(-1)^2

0.175032

0.0000

GARCH(-1)

0.728945

0.0000

GARCH(-1)

0.738369

0.0000

GARCH(-1)

0.788232

0.0000


Phụ lục 7. Kết quả ước lượng mô hình CCC


Các phương trình trung bình:


RCII = -0.00125401047294+0.0839002961242*RCII(-1) +e RFPT = -0.00160353921984+0.0605581155104*RFPT(-1)+e RGMD = -0.00253729651678+0.0860966474515*RGMD(-1)+e RKDC = -0.00101797052893+0.10143705969*RKDC(-1)+e RITA = -0.00207396143231+0.078632313595*RITA(-1)+e

RVNINDEX=-0.000735170643729+0.119094618122*RVNINDEX(-1)+e

Các phương trình phương sai:


GARCH1 = 0.000105455532449 + 0.278904449294*RESID1(-1)^2 + 0.664381961928*GARCH1(-1) Prob. (0.000) (0.000) (0.000)

GARCH2 = 9.2133004015e-05 + 0.325559387907*RESID2(-1)^2 + 0.576824849594*GARCH2(-1) Prob. (0.000) (0.000) (0.000)

GARCH3 = 8.41890841123e-05 + 0.292234766559*RESID3(-1)^2 + 0.672738965563*GARCH3(-1) Prob. (0.000) (0.000) (0.000)

GARCH4 = 6.4231402351e-05 + 0.265810362863*RESID4(-1)^2 + 0.691411014647*GARCH4(-1) Prob. (0.000) (0.000) (0.000)

GARCH5 = 0.000132476015096 + 0.253438220487*RESID5(-1)^2 + 0.667809573438*GARCH5(-1) Prob. (0.000) (0.000) (0.000)

GARCH6 = 3.73793471141e-05 + 0.174654311498*RESID6(-1)^2 + 0.748735668436*GARCH6(-1)


Prob. (0.000) (0.000) (0.000)


Các phương trình hiệp phương sai:


COV1_2 = 0.498282334165*SQRT(GARCH1*GARCH2) Prob. (0.000)


COV1_3 = 0.526742671525*SQRT(GARCH1*GARCH3) Prob. (0.000)

COV1_4 = 0.445011987939*SQRT(GARCH1*GARCH4) Prob. (0.000)

COV1_5 = 0.51451364586*SQRT(GARCH1*GARCH5) Prob. (0.000)

COV1_6 = 0.660144651063*SQRT(GARCH1*GARCH6) Prob. (0.000)

COV2_3 = 0.554149302091*SQRT(GARCH2*GARCH3) Prob. (0.000)

COV2_4 = 0.4600654794*SQRT(GARCH2*GARCH4) Prob. (0.000)

COV2_5 = 0.497339740627*SQRT(GARCH2*GARCH5) Prob. (0.000)

COV2_6 = 0.725294839971*SQRT(GARCH2*GARCH6) Prob. (0.000)

COV3_4 = 0.472885962835*SQRT(GARCH3*GARCH4) Prob. (0.000)

COV3_5 = 0.591013694372*SQRT(GARCH3*GARCH5) Prob. (0.000)

COV3_6 = 0.727263011566*SQRT(GARCH3*GARCH6) Prob. (0.000)

COV4_5 = 0.45871954421*SQRT(GARCH4*GARCH5) Prob. (0.000)

COV4_6 = 0.614401341392*SQRT(GARCH4*GARCH6) Prob. (0.000)

COV5_6 = 0.705111683562*SQRT(GARCH5*GARCH6) Prob. (0.000)


Phụ lục 8. Đồ thị các chuỗi phương sai có điều kiện



.0020


.0016


.0012


.0008


.0004


.0000


garchrvnindex


250 500 750 1000 1250 005 004 003 002 001 000 garchrhnx 250 500 750 1000 1250 05 04 03 02 01 00 1

250 500 750 1000 1250


.005


.004


.003


.002


.001


.000


garchrhnx


250 500 750 1000 1250 05 04 03 02 01 00 garchrita 250 500 750 1000 1250 Conditional variance 3

250 500 750 1000 1250


.05


.04


.03


.02


.01


.00


garchrita


250 500 750 1000 1250 Conditional variance Conditional variance Conditional variance 035 030 025 5

250 500 750 1000 1250


Conditional variance

Conditional variance

Conditional variance



.035


.030


.025


.020


.015


.010


.005


garchrcii


05 04 03 02 01 garchrfpt 016 014 012 010 008 006 004 002 garchrgmd 000 0024 0020 0016 0012 0008 7

.05


.04


.03


.02


.01


garchrfpt


016 014 012 010 008 006 004 002 garchrgmd 000 0024 0020 0016 0012 0008 0004 0000 06 05 04 03 250 8

.016


.014


.012


.010


.008


.006


.004


.002


garchrgmd


.000


.0024


.0020


.0016


.0012


.0008


.0004


.0000


06 05 04 03 250 500 750 1000 1250 Conditional variance garchrkdc 250 500 750 1000 1250 Conditional 9

.06


.05


.04


.03


250 500 750 1000 1250


Conditional variance


garchrkdc 250 500 750 1000 1250 Conditional variance garchrdig 00 0018 0016 0014 0012 0010 0008 11

garchrkdc


250 500 750 1000 1250


Conditional variance


garchrdig


.00


.0018


.0016


.0014


.0012


.0010


.0008


.0006


.0004


.0002


0024 0020 0016 0012 250 500 750 1000 1250 Conditional variance garchrbvh 100 200 300 400 500 600 13

.0024


.0020


.0016


.0012


250 500 750 1000 1250


Conditional variance


garchrbvh 100 200 300 400 500 600 700 800 Conditional variance garchrdpm 000 008 007 006 005 004 15

garchrbvh


100 200 300 400 500 600 700 800


Conditional variance


garchrdpm


.000


008 007 006 005 004 012 010 008 006 004 002 000 250 500 750 1000 1250 Conditional variance 17

.008


.007


.006


.005


.004


.012


.010


.008


.006


.004


.002


.000


250 500 750 1000 1250


Conditional variance


garchrctg 100 200 300 400 500 600 700 800 Conditional variance garchreib 02 01 00 100 200 300 400 19

garchrctg


100 200 300 400 500 600 700 800


Conditional variance


garchreib 02 01 00 100 200 300 400 500 600 700 800 0008 0004 0000 250 500 750 1000 1250 003 002 001 21

garchreib


.02


.01


.00


100 200 300 400 500 600 700 800


.0008


.0004


.0000


250 500 750 1000 1250


.003


.002


.001


.000


100 200 300 400 500 600 700


Conditional variance

Conditional variance

Conditional variance



.024


.020


.016


.012


.008


.004


.000


garchrhpg


250 500 750 1000 1250 006 005 004 003 002 001 000 garchrhsg 250 500 750 1000 006 005 004 003 002 25

250 500 750 1000 1250


.006


.005


.004


.003


.002


.001


.000


garchrhsg


250 500 750 1000 006 005 004 003 002 001 000 garchrhsg 250 500 750 1000 Conditional variance 27

250 500 750 1000


.006


.005


.004


.003


.002


.001


.000


garchrhsg


250 500 750 1000 Conditional variance Conditional variance Conditional variance 0024 garchrmbb 0020 29

250 500 750 1000


Conditional variance

Conditional variance

Conditional variance



.0024


garchrmbb


0020 garchrmsn 0035 garchrogc 0020 0016 0012 0008 0004 0016 0012 0008 0004 0030 0025 0020 0015 0010 31

.0020


garchrmsn


0035 garchrogc 0020 0016 0012 0008 0004 0016 0012 0008 0004 0030 0025 0020 0015 0010 0005 0000 0040 32

.0035


garchrogc


.0020


.0016


.0012


.0008


.0004


.0016


.0012


.0008


.0004


.0030


0025 0020 0015 0010 0005 0000 0040 0035 0030 0025 0020 0015 0010 0005 50 100 150 200 250 33

.0025


.0020


.0015


.0010


.0005


.0000


0040 0035 0030 0025 0020 0015 0010 0005 50 100 150 200 250 Conditional variance garchrpvf 0000 0040 34

.0040


.0035


.0030


.0025


.0020


.0015


.0010


.0005


50 100 150 200 250


Conditional variance


garchrpvf


.0000


0040 0035 0030 0025 0020 0015 0010 0005 100 200 300 400 500 600 700 Conditional variance garchrsbt 36

.0040


.0035


.0030


.0025


.0020


.0015


.0010


.0005


100 200 300 400 500 600 700


Conditional variance


garchrsbt


.0000


007 006 005 004 003 002 001 100 200 300 400 500 600 Conditional variance garchrvcb 0000 250 500 750 38

.007


.006


.005


.004


.003


.002


.001


100 200 300 400 500 600


Conditional variance


garchrvcb


.0000


250 500 750 1000


.0000


250 500 750 1000


.000


100 200 300 400 500 600 700 800


Conditional variance

Conditional variance

Conditional variance


Phụ lục 9. Một số chương trình Matlab

% Ước lượng VaR và ES bằng mô hình GARCH-EVT-copula. load('data')

T = size(data,1); nIndices = size(data,2); for i=1:nIndices

spec(i) = garchset('Distribution' , 'T' , 'Display', 'off', ...

'VarianceModel', 'GARCH', 'P', 1, 'Q', 1, 'R',0)

end

residuals = NaN(T, nIndices); % preallocate storage sigmas = NaN(T, nIndices);

for i = 1:nIndices

[spec(i) , errors, LLF, ...

residuals(:,i), sigmas(:,i)] = garchfit(spec(i), data(:,i)); end

residuals = residuals ./ sigmas;

nPoints = 200; % # of sampled points of kernel-smoothed CDF tailFraction = 0.1; % Decimal fraction of residuals allocated to each tail OBJ = cell(nIndices,1); % Cell array of Pareto tail objects

for i = 1:nIndices

OBJ{i} = paretotails(residuals(:,i), tailFraction, 1 - tailFraction, 'kernel'); end

U = zeros(size(residuals)); for i = 1:nIndices

U(:,i) = OBJ{i}.cdf(residuals(:,i)); % transform margin to uniform end

%[R, DoF] = copulafit('t', U, 'Method', 'ApproximateML'); % fit the copula RHOHAT = copulafit('Gaussian',U);%fit the copula-Gaussian

s = RandStream.getDefaultStream(); reset(s)

nTrials = 5000; % # of independent random trials horizon = 1; % VaR forecast horizon

Z = zeros(horizon, nTrials, nIndices); % standardized residuals array

%U = copularnd('t', R, DoF, horizon * nTrials); % t copula simulation

U = copularnd('Gaussian', RHOHAT, horizon * nTrials);% Gaussian copula

%simulation

for j = 1:nIndices

Z(:,:,j) = reshape(OBJ{j}.icdf(U(:,j)), horizon, nTrials); end

preResidual = residuals(end,:) .* sigmas(end,:); % presample model residuals preSigma = sigmas(end,:); % presample volatilities

preReturn = data(end,:); % presample returns simulatedReturns = zeros(horizon, nTrials, nIndices);

for i = 1:nIndices

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 01/09/2023