Rotated Component Matrixa
Component | |||||
1 | 2 | 3 | 4 | 5 | |
PV2 | .757 | ||||
PV1 | .713 | ||||
PV5 | .708 | ||||
PV3 | .650 | .316 | |||
PV4 | .621 | ||||
ATTP4 | .774 | ||||
ATTP1 | .772 | ||||
ATTP2 | .769 | ||||
ATTP5 | .629 | .302 | |||
ATTP3 | .601 | ||||
CS1 | .816 | ||||
CS4 | .740 | ||||
CS2 | .716 | ||||
CS3 | .634 | .305 | |||
CS5 | .488 | ||||
DV3 | .764 | ||||
DV1 | .656 | ||||
DV4 | .300 | .653 | |||
DV2 | .647 | ||||
DV5 | .587 | ||||
NV2 | .720 | ||||
NV1 | .640 | ||||
NV3 | .638 | ||||
NV4 | .628 | ||||
NV5 | .604 |
Có thể bạn quan tâm!
- Các Giải Pháp Liên Quan Đến Hoạt Động Quản Lý Chất Lượng Dịch Vụ
- Promise That All Of Your Information Just For Survey Purpose Of The Thesis, Never For Others Commercial Purpose. All The Information Will Be Keep Secret And Just Provide For My Professor When She
- Giải pháp nâng cao chất lượng dịch vụ tại khách sạn Park Hyatt Saigon đến năm 2025 - 15
- Giải pháp nâng cao chất lượng dịch vụ tại khách sạn Park Hyatt Saigon đến năm 2025 - 17
Xem toàn bộ 136 trang tài liệu này.
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 7 iterations.
Kaiser-Meyer-Olkin
Adequacy.
Measure
of Sampling
.822
Bartlett's
Sphericity
Test
of
KMO and Bartlett's Test
2413.211 | |
df | 276 |
Sig. | .000 |
Total Variance Explained
Initial Eigenvalues | Extraction Sums of Squared Loadings | Rotation Sums of Squared Loadings | |||||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 5.645 | 23.520 | 23.520 | 5.645 | 23.520 | 23.520 | 2.877 | 11.988 | 11.988 |
2 | 2.626 | 10.941 | 34.461 | 2.626 | 10.941 | 34.461 | 2.785 | 11.603 | 23.591 |
3 | 2.220 | 9.252 | 43.713 | 2.220 | 9.252 | 43.713 | 2.628 | 10.949 | 34.540 |
4 | 1.485 | 6.187 | 49.900 | 1.485 | 6.187 | 49.900 | 2.559 | 10.663 | 45.203 |
5 | 1.316 | 5.481 | 55.381 | 1.316 | 5.481 | 55.381 | 2.443 | 10.178 | 55.381 |
6 | .993 | 4.136 | 59.518 | ||||||
7 | .893 | 3.722 | 63.239 | ||||||
8 | .807 | 3.362 | 66.601 | ||||||
9 | .770 | 3.209 | 69.810 | ||||||
10 | .723 | 3.011 | 72.821 | ||||||
11 | .673 | 2.805 | 75.626 | ||||||
12 | .653 | 2.721 | 78.347 | ||||||
13 | .625 | 2.605 | 80.952 | ||||||
14 | .553 | 2.304 | 83.256 | ||||||
15 | .537 | 2.237 | 85.493 | ||||||
16 | .513 | 2.136 | 87.630 | ||||||
17 | .449 | 1.871 | 89.501 | ||||||
18 | .447 | 1.861 | 91.362 | ||||||
19 | .434 | 1.808 | 93.169 | ||||||
20 | .387 | 1.614 | 94.783 | ||||||
21 | .353 | 1.471 | 96.254 | ||||||
22 | .320 | 1.334 | 97.588 | ||||||
23 | .310 | 1.290 | 98.878 | ||||||
24 | .269 | 1.122 | 100.000 |
Extraction Method: Principal Component Analysis.
Rotated Component Matrixa
Component | |||||
1 | 2 | 3 | 4 | 5 | |
PV2 | .758 | ||||
PV1 | .719 | ||||
PV5 | .709 | ||||
PV3 | .653 | .310 | |||
PV4 | .615 | ||||
ATTP1 | .780 | ||||
ATTP4 | .779 | ||||
ATTP2 | .774 | ||||
ATTP5 | .632 | ||||
ATTP3 | .592 | ||||
DV3 | .761 | ||||
DV4 | .301 | .662 | |||
DV1 | .658 | ||||
DV2 | .654 | ||||
DV5 | .594 | ||||
NV2 | .727 | ||||
NV1 | .642 | ||||
NV3 | .639 | ||||
NV4 | .621 | ||||
NV5 | .604 | ||||
CS1 | .826 | ||||
CS4 | .729 | ||||
CS2 | .709 | ||||
CS3 | .303 | .668 |
Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.
a. Rotation converged in 7 iterations.
KMO and Bartlett's Test
.861 | |
Approx. Chi-Square | 857.183 |
Bartlett's Test of Sphericity df | 15 |
Sig. | .000 |
Total Variance Explained
Initial Eigenvalues | Extraction Sums of Squared Loadings | |||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 3.605 | 60.082 | 60.082 | 3.605 | 60.082 | 60.082 |
2 | .660 | 11.004 | 71.085 | |||
3 | .634 | 10.573 | 81.659 | |||
4 | .510 | 8.498 | 90.157 | |||
5 | .377 | 6.290 | 96.447 | |||
6 | .213 | 3.553 | 100.000 |
Extraction Method: Principal Component Analysis.
Component Matrixa
Component | |
1 | |
HL6 | .913 |
HL5 | .797 |
HL1 | .755 |
HL3 | .750 |
HL4 | .716 |
HL2 | .700 |
Extraction Method: Principal Component Analysis.
a. 1 components extracted.
PHỤ LỤC 6: HỒI QUY
Correlations
HL | DV | ATTP | PV | NV | CS | ||
Pearson Correlation | 1 | .572** | .424** | .471** | .479** | .594** | |
HL | Sig. (2-tailed) | .000 | .000 | .000 | .000 | .000 | |
N | 312 | 312 | 312 | 312 | 312 | 312 | |
Pearson Correlation | .572** | 1 | .235** | .328** | .258** | .457** | |
DV | Sig. (2-tailed) | .000 | .000 | .000 | .000 | .000 | |
N | 312 | 312 | 312 | 312 | 312 | 312 | |
Pearson Correlation | .424** | .235** | 1 | .157** | .376** | .140* | |
ATTP | Sig. (2-tailed) | .000 | .000 | .005 | .000 | .014 | |
N | 312 | 312 | 312 | 312 | 312 | 312 | |
Pearson Correlation | .471** | .328** | .157** | 1 | .434** | .282** | |
PV | Sig. (2-tailed) | .000 | .000 | .005 | .000 | .000 | |
N | 312 | 312 | 312 | 312 | 312 | 312 | |
Pearson Correlation | .479** | .258** | .376** | .434** | 1 | .256** | |
NV | Sig. (2-tailed) | .000 | .000 | .000 | .000 | .000 | |
N | 312 | 312 | 312 | 312 | 312 | 312 | |
Pearson Correlation | .594** | .457** | .140* | .282** | .256** | 1 | |
CS | Sig. (2-tailed) | .000 | .000 | .014 | .000 | .000 | |
N | 312 | 312 | 312 | 312 | 312 | 312 |
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
Descriptive Statistics
Mean | Std. Deviation | N | |
HL | 4.0134 | .45570 | 312 |
DV | 3.9955 | .44373 | 312 |
ATTP | 3.9929 | .49985 | 312 |
PV | 3.7551 | .50849 | 312 |
NV | 4.0962 | .45163 | 312 |
CS | 4.0817 | .50810 | 312 |
Correlations
HL | DV | ATTP | PV | NV | CS | ||
Pearson Correlation Sig. (1-tailed) N | HL DV ATTP PV NV CS HL DV ATTP PV NV CS HL DV ATTP PV NV CS | 1.000 | .572 | .424 | .471 | .479 | .594 |
.572 | 1.000 | .235 | .328 | .258 | .457 | ||
.424 | .235 | 1.000 | .157 | .376 | .140 | ||
.471 | .328 | .157 | 1.000 | .434 | .282 | ||
.479 | .258 | .376 | .434 | 1.000 | .256 | ||
.594 | .457 | .140 | .282 | .256 | 1.000 | ||
. | .000 | .000 | .000 | .000 | .000 | ||
.000 | . | .000 | .000 | .000 | .000 | ||
.000 | .000 | . | .003 | .000 | .007 | ||
.000 | .000 | .003 | . | .000 | .000 | ||
.000 | .000 | .000 | .000 | . | .000 | ||
.000 | .000 | .007 | .000 | .000 | . | ||
312 | 312 | 312 | 312 | 312 | 312 | ||
312 | 312 | 312 | 312 | 312 | 312 | ||
312 | 312 | 312 | 312 | 312 | 312 | ||
312 | 312 | 312 | 312 | 312 | 312 | ||
312 | 312 | 312 | 312 | 312 | 312 | ||
312 | 312 | 312 | 312 | 312 | 312 |
Model Summaryb
R | R Square | Adjusted R Square | Std. Error of the Estimate | Durbin-Watson | |
1 | .784a | .614 | .608 | .28531 | 1.670 |
a. Predictors: (Constant), CS, ATTP, PV, DV, NV
b. Dependent Variable: HL
ANOVAa
Sum of Squares | df | Mean Square | F | Sig. | ||
Regression | 39.674 | 5 | 7.935 | 97.474 | .000b | |
1 | Residual | 24.910 | 306 | .081 | ||
Total | 64.583 | 311 |
a. Dependent Variable: HL
b. Predictors: (Constant), CS, ATTP, PV, DV, NV