Tuyển chọn, nghiên cứu đặc tính kháng tác nhân gây bệnh và tạo chế phẩm phòng trừ bệnh rễ của các chủng vi khuẩn vùng rễ cây hồ tiêu Piper nigrum L. tại Tây Nguyên - 21

annuum). BioMed research international, 2017, https://doi.org/10.1155/2017/9397619.

145. Jiang, C. H., Liao, M. J., Wang, H. K., Zheng, M. Z., Xu, J. J., & Guo, J. H. , Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biological Control, 2018, 126, 147-157.

146. Meng, Q., Jiang, H., & Hao, J. J., Effects of Bacillus velezensis strain BAC03 in promoting plant growth. Biological Control, 2016, 98, 18-26.

147. Kodithuwakku, R. D., Wijekoon, W. M. R. W. B., Kumari, I. S., & De Silva, D.

P. P. , Efficacy of single and combined application of Trichoderma spp. and Pseudomonas fluorescens along with bio-fertilizer (Arbuscular Mycorrhizae- AM) on growth of nursery plants of black pepper (Piper nigrum L.). Sri Lanka Journal of Food and Agriculture, 2016, 2(1), 69-72.

148. Dastager, S. G., Deepa, C. K., & Pandey, A., Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper nigrum L.). World Journal of Microbiology and Biotechnology, 2011, 27(2), 259-265.

149. Hoàng Minh Tấn, Nguyễn Quang Thạch và Vũ Quang Sáng, Giáo trình sinh lý thực vật. Nhà xuất bản Nông nghiệp, 2006, 240 trang.

150. Jamal, Q., Cho, J. Y., Moon, J. H., Munir, S., Anees, M., & Kim, K. Y., Identification for the First Time of Cyclo (d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita. Molecules, 2017, 22(11), 1839.

151. Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H., & Kim, Y. H. , A plant growth promoting rhizobacterium, Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology, 2008, 99(8), 3016- 3023.

152. Basyony.A.G., & Abo-Zaid, G. A., Biocontrol of the root-knot nematode, Meloidogyne incognita, using an eco-friendly formulation from Bacillus subtilis, and greenhouse studies. Egyptian Journal of Biological Pest Control, 2018, 28(1), 1-13.

Có thể bạn quan tâm!

Xem toàn bộ 224 trang tài liệu này.

153. Chowdhury, S. P., Dietel, K., Rändler, M., Schmid, M., Junge, H., Borriss, R.,

... & Grosch, R., Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth

Tuyển chọn, nghiên cứu đặc tính kháng tác nhân gây bệnh và tạo chế phẩm phòng trừ bệnh rễ của các chủng vi khuẩn vùng rễ cây hồ tiêu Piper nigrum L. tại Tây Nguyên - 21

and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos one, 2013, 8(7), e68818.

154. Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., ... & Whitman, W. B. (Eds.), Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes. Vol. 3. Springer Science & Business Media, 2009, 21-128.

155. Ongena, M., & Jacques, P., Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in microbiology, 2008, 16(3), 115-125.

156. Wu, L., Wu, H. J., Qiao, J., Gao, X., & Borriss, R., Novel routes for improving biocontrol activity of Bacillus based bioinoculants. Frontiers in microbiology, 2015, 6: 1395.

157. Saharan.B &Vibha Nehra, Plant Growth Promoting Rhizobacteria: A Critical Review. Life Sci Med Res,2011, 21, 1-30.

158. Keren-Zur, M., Antonov, J., Bercovitz, A., Feldman, K., Husid, A., Kenan, G.,

... & Rebhun, M. , Bacillus firmus formulations for the safe control of root-knot nematodes. In The BCPC Conference: Pests and diseases, Volume 1. Proceedings of an international conference held at the Brighton Hilton Metropole Hotel, Brighton, UK, 13-16 November 2000, 47-52. British Crop Protection Council.

159. Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., Van Santen, E., & Kloepper, J. W., Suppressiveness of root-knot nematodes mediated by rhizobacteria. Biological Control, 2008, 47(1), 55-59.

160. Wilson, M. J., & Jackson, T. A., Progress in the commercialisation of bionematicides. BioControl, 2013, 58(6), 715-722.

161. Askary. T. H., Limitations, research needs and future prospects in the biological control of phytonematodes. Biocontrol agents of phytonematodes. CAB International, Wallingford, 2015, UK, 446-454.

162. Rabbee, M. F., Ali, M. D., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H., Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules, 2019, 24(6), 1046

163. Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A., & Lawrence, G. W., Biological control of Meloidogyne incognita by spore-

forming plant growth-promoting rhizobacteria on cotton. Plant disease, 2017,

101(5), 774-784.

164. Vũ Thúy Nga, Nghiên cứu tạo chế phẩm vi sinh vật xử lý nước thải chế biến tinh bột sắn. Luận án tiến sĩ Nông nghiệp, 2016, 146 trang.

165.Phương Thị Hương, Vũ Văn Hạnh, Lựa chọn điều kiện lên men cho sự sinh trưởng chủng Bacillus subtilis BSVN15 ứng dụng sản xuất chế phẩm probiotic trong chăn nuôi. Tạp chí Công nghệ Sinh học, 2018, 16(1): 167-172

166. Thi Nguyen, H. Y., & Tran, G. B. Optimization of fermentation conditions and media for production of glucose isomerase from Bacillus megaterium using response surface methodology. Scientifica, 2018, 1-12

167. Lê Vũ Khánh Trang, Lê Thị Mai,Võ Lương Ý Nhi, Huỳnh Thị Ngọc Lan, Đánh giá hiệu lực ức chế của vi khuẩn Bacillus velezensis đối với nấm Phytophthora sp. gây bệnh sương mai trên cây cà chua. Tạp chí Khoa học và Công nghệ Nông nghiệp Việt Nam - Số 01(122)/2021, trang 88-94.

168. Diby & Sarma Y. R., Pseudomonas fluorescens mediated systemic resistance in black pepper (Piper nigrum L.) is driven through an elevated synthesis of defence enzymes. Archives of phytopathology and Plant protection, 2005, 38(2), 139-149.

169. Wiratno.W, Syakir.M, Sucipto.I & Pradana. A.P, Isolation and characterization of endophytic bacteria from roots of Piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita. Biodiversitas Journal of Biological Diversity, 2019, 20(3), 682-687.

170. Özyilmaz, Ü., & Benlioglu, K., Enhanced biological control of phytophthora blight of pepper by biosurfactant-producing Pseudomonas. The plant pathology journal, 2013, 29(4), 418.

171. Hernández-León, R., Rojas-Solís, D., Contreras-Pérez, M., del Carmen Orozco- Mosqueda, M., Macías-Rodríguez, L. I., Reyes-de la Cruz, H., ... & Santoyo, G., Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biological Control, 2005, 81, 83-92.

172. Bibi, F., Naseer, M. I., Yasir, M., Al-Ghamdi, A. A. K., & Azhar, E. I., LC-MS based identification of secondary metabolites from marine antagonistic endophytic bacteria. Genetics and Molecular Research, 2018, 17(1), 1-14.

173. Schoffelmeer, E. A., Klis, F. M., Sietsma, J. H., & Cornelissen, B. J., The cell wall of Fusarium oxysporum. Fungal Genet. Biol, 1999, 27 (2-3),275–282. 10.1006/fgbi.1999.1153

174. Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., & Colvin, N., Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structure deformation in pathogenic fungi in vitro. Microbiol. Res, 2005, 160 (1), 75–81.

175. Figueroa-López, A. M., Cordero-Ramírez, J. D., Martínez-Álvarez, J. C., López- Meyer, M., Lizárraga-Sánchez, G. J., Félix-Gastélum, R., ... & Maldonado- Mendoza, I. E. , Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus, 2016, 5(1), 330.

176. Rathore, R., Vakharia, D. N., & Rathore, D. S., In vitro screening of different Pseudomonas fluorescens isolates to study lytic enzyme production and growth inhibition during antagonism of Fusarium oxysporum f. sp. cumini, wilt causing pathogen of cumin. Egyptian Journal of Biological Pest Control, 2020, 30, 1-8.

177. Chang, W. T., Chen, M. L., & Wang, S. L., An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World Journal of microbiology and Biotechnology, 2010, 26(5), 945-950.

178. Niku‐Paavola, M. L., Laitila, A., Mattila‐Sandholm, T., & Haikara, A., New types of antimicrobial compounds produced by Lactobacillus plantarum. Journal of applied microbiology, 1999, 86(1), 29-35.

179. Wang, H., Yan, Y., Wang, J., Zhang, H., & Qi, W., Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PloS one, 2012, 7(1), e29452.

180. Sheoran, N., Nadakkakath, A. V., Munjal, V., Kundu, A., Subaharan, K., Venugopal, V., ... & Kumar, A., Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiological research, 2015, 173, 66-78

181. Patel, A., Kumar, A., Sheoran, N., Kumar, M., Sahu, K. P., Ganeshan, P., ... &

Gogoi, R. , Antifungal and defense elicitor activities of pyrazines identified in endophytic Pseudomonas putida BP25 against fungal blast incited by Magnaporthe oryzae in rice. Journal of Plant Diseases and Protection, 2020, 128 (1), 261-272.

182. Venturini, T. P., Rossato, L., Spader, T. B., Tronco-Alves, G. R., Azevedo, M. I., Weiler, C. B., ... & Alves, S. H., In vitro synergisms obtained by amphotericin B and voriconazole associated with non-antifungal agents against Fusarium spp. Diagnostic microbiology and infectious disease, 2011, 71(2), 126-130.

183. Kerry. B. R., Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual review of phytopathology, 2000, 38(1), 423-441.

184. Compant, S., Duffy, B., Nowak, J., Clément, C., & Barka, E. A., Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Applied and environmental microbiology, 2005, 71(9), 4951-4959.

185. Khatamidoost, Z., Jamali, S., Moradi, M., & Saberi Riseh, R., Effect of Iranian strains of Pseudomonas spp. on the control of root-knot nematodes on Pistachios. Biocontrol science and technology, 2015, 25(3), 291-301.

186. Veliz, E. A., Martínez-Hidalgo, P., & Hirsch, A. M., Chitinase-producing bacteria and their role in biocontrol. AIMS microbiology, 2017, 3(3), 689.

187. Soliman, G. M., Ameen, H. H., Abdel-Aziz, S. M., & El-Sayed, G. M., In vitro evaluation of some isolated bacteria against the plant parasite nematode Meloidogyne incognita. Bulletin of the National Research Centre, 2019, 43(1), 1-7.

188. Jung, W. J., Jung, S. J., An, K. N., Jin, Y. L., Park, R. D., Kim, K. Y., ... & Kim,

T. H., Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). Journal of microbiology and biotechnology, 2002, 12(6), 865-871.

189. Thongkaewyuan, A., & Chairin, T., Biocontrol of Meloidogyne incognita by Metarhizium guizhouense and its protease. Biological Control, 2018, 126, 142- 146.

190. Zhai, Y., Shao, Z., Cai, M., Zheng, L., Li, G., Yu, Z., & Zhang, J., Cyclo (l-Pro– l-Leu) of Pseudomonas putida MCCC 1A00316 isolated from Antarctic soil: Identification and characterization of activity against Meloidogyne incognita. Molecules, 2019, 24(4), 768.

191. Gao, H., Qi, G., Yin, R., Zhang, H., Li, C., & Zhao, X., Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Scientific reports, 2016, 6(1), 1-11.

192. Oliveira, D. F., Santos, H. M., Nunes, A. S., Campos, V. P., Pinho, R. S. D., & Gajo, G. C. , Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase from M. incognita. Anais da Academia Brasileira de Ciências, 2014, 86(2), 525-538.

193. Syed-Ab-Rahman, S. F., Carvalhais, L. C., Chua, E., Xiao, Y., Wass, T. J., & Schenk, P. M. ,Identification of soil bacterial isolates suppressing different Phytophthora spp. and promoting plant growth. Frontiers in plant science, 2018, 9: 1502.

194. Kumar, S. N., Nambisan, B., & Mohandas, C., Purification and identification of two antifungal cyclic dipeptides from Bacillus cereus subsp. thuringiensis associated with a rhabditid entomopathogenic nematode especially against Fusarium oxysporum. Journal of Enzyme Inhibition and Medicinal Chemistry, 2004, 29(2), 190-197.

195. Omer, Biofomulations of Bacillus spores for using as biofertilizer. Life Science Journal, 2010, 7 (4), 124 – 131.

196. Mokhtarnejad, L., Etebarian, H. R., Fazeli, M. R., & Jamalifar, H., Evaluation of different formulations of potential biocontrol yeast isolates efficacy on apple blue mold at storage condition. Archives of Phytopathology and Plant Protection, 2011, 44(10), 970-980.

197. Đặng Hoài An, Nguyễn Thị Phi Oanh, Nguyễn Đắc Khoa, Tuyển chọn chất mang để tồn trữ vi khuẩn Bacillus aerophilus đối kháng với vi khuẩn Xanthomonas oryzae pv.oryzae gây bệnh cháy bìa lá lúa. Tạp chí khoa học Trường Đại học Cần Thơ, 2017, 52b, 8-15.

198. Muis, Biomass production and formulation of Bacillus subtilis for biological control. Indonesian Journal of Agricultural Science, 2006, 7(2),51-56

199. Nashwa, Shaimaa, Mohamed, Ahmed, Formualations of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Fusarium solani. Journal of plant protection research, 2013, 53 (3), 295-300.

DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ

1. Thi Huyen Trang Trinh, Quang Huong Ngo, Thi Phuong Khanh Vo, Anh Dzung Nguyen (2018). Effect of plant growth promoting rhizobacteria on the growth and biocontrol of black pepper (Piper nigrum L.) under the green house condition. Hội thảo quốc tế Malaysia, p 202-205.

2. Thi Huyen Trang Trinh, San-Lang Wang,Van Bon Nguyen, Minh Dinh Tran, Chien Thang Doan, Thi Phuong Khanh Vo, Que V. Huynh, and Anh Dzung Nguyen (2019). A potent antifungal rhizobacteria Bacillus velezensis RB. DS29 isolated from black pepper (Piper nigrum L.). Research on Chemical Intermediates 45, no. 11 (2019): 5309-5323.

3. Anh Dzung Nguyen, San-Lang Wang, Thi Huyen Trang Trinh, Thi Ngoc Tran, Van Bon Nguyen, Chien Thang Doan, Que V. Huynh, and Thi Phuong Khanh Vo (2019). Plant growth promotion and fungal antagonism of endophytic bacteria for the sustainable production of black pepper (Piper nigrum L.). Research on Chemical Intermediates 45, no. 11 (2019): 5325-5339.

4. Van Bon Nguyen, San-Lang Wang, Thi Hanh Nguyen, Thi Huyen Nguyen, Thi Huyen Trang Trinh, Thi Thiep Nong, To Uyen Nguyen, Van Nam Nguyen and Anh Dzung Nguyen (2019). Reclamation of rhizobacteria newly isolated from black pepper plant roots as potential biocontrol agents of root-knot nematodes. Research on Chemical Intermediates 45, no. 11 (2019): 5293-5307.

5. Trịnh Thị Huyền Trang, Nguyễn Anh Dũng, Lê Thị Ánh Hồng (2019). Phân lập và tuyển chọn vi khuẩn vùng rễ kháng nấm Phytophthora trên cây hồ tiêu tại huyện Cư Kuin, Đắk Lắk. Tạp chí khoa học Đại học Tây Nguyên, số 34, trang 100-106.

6. Trịnh Thị Huyền Trang, Lê Thị Khánh Linh, Nguyễn Anh Dũng, Lê Thị Ánh Hồng (2019). Hoạt tính kháng tuyến trùng Meloidogyne spp. của vi khuẩn Bacillus velezensis EK7 ở vùng rễ cây hồ tiêu. Hội thảo các nhà khoa học trẻ quốc gia, năm 2019, trang 368-376.

7. Trịnh Thị Huyền Trang, Lê Thị Ánh Hồng, Trần Minh Định, Nguyễn Anh Dũng, Trần Thị Phượng (2020). Tuyển chọn vi khuẩn vùng rễ cây hồ tiêu có khả năng kháng nấm Fusarium.sp trong điều kiện invitro ex vitro. Tạp chí khoa học ĐH Tây Nguyên, số 42, trang 50-58.

Xem toàn bộ nội dung bài viết ᛨ

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 28/12/2022