Hình 3.42. Đồ thị ảnh hưởng của lượng xúc tác TFG20 đến khả năng chuyển hóa Cr(VI)
Tuy nhiên khi hàm lượng chất xúc tác tăng lên quá 1g/L, ta lại thấy hiệu suất phản ứng không tăng mà thậm chí còn bị giảm xuống. Điều này được lý giải là do hiệu ứng che chắn của lượng xúc tác không kịp tham gia phản ứng, các ion Cr(VI) đã hấp phụ vào lượng tối ưu xúc tác, phần xúc tác chưa kịp nhận ion Cr(VI) sẽ tạo thành lớp khiên cản trở sự tiếp xúc của ánh sáng, do đó làm giảm phần diện tích tiếp xúc ánh sáng trên bề mặt chất xúc tác và vì vậy hiệu ứng xúc tác quang bị giảm sút. Cụ thể ở đây, sau 90 phút, hiệu quả xử lý chỉ còn đạt 97,1%. Càng tăng lượng xúc tác lên cao hơn, hiệu quả xử lý sẽ càng giảm. Vì vậy, có thể chọn hàm lượng xúc tác quang tối ưu của vật liệu TFG với mẫu nước chứa Cr(VI) nồng độ 10 mg/L, trong môi trường axit là 1 g/L.
3.2.1.5. Ảnh hưởng của cường độ chiếu sáng
Kết quả nghiên cứu ảnh hưởng của cường độ chiếu sáng trên hình 3.43 cho thấy, cường độ chiếu sáng (đánh giá qua công suất chiếu sáng) có ảnh hưởng đến hiệu suất xử lý.
Hình 3.43. Đồ thị ảnh hưởng của cường độ chiếu sáng đến khả năng chuyển hóa Cr(VI)
Có thể bạn quan tâm!
- Giản Đồ Xrd Của Các Mẫu Tfg20 Thủy Nhiệt Ở Các Nhiệt Độ Khác Nhau
- Khảo Sát Một Số Đặc Trưng Của Vật Liệu Tổ Hợp Tio2- Fe2O3/gnp
- Nghiên Cứu Quá Trình Chuyển Hóa Cr(Vi) Của Vật Liệu Tổ Hợp Tio2- Fe2O3/gnp
- Nghiên Cứu Quá Trình Xử Lý Mẫu Nước Thải Thực Tế
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 19
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 20
Xem toàn bộ 173 trang tài liệu này.
Khi công suất đèn tăng, độ rọi tăng làm cho hiệu suất xử lý cũng tăng theo nhưng quá trình tăng này không phải là lũy tiến, tăng mãi. Lúc đầu quá trình tăng này là rõ rệt tuy nhiên khi công suất trên 296,4 W thì quá trình tăng chậm lại và hiệu suất xử lý không khác biệt nhiều khi công suất trên 356,2W (hiệu suất đạt 97,8% so với 99,8% khi công suất đèn là 391,5W). Điều này được giải thích là do khi công suất tăng làm tăng quang thông, do khoảng cách chiếu đèn không đổi nên độ rọi cũng tăng theo, khi độ rọi tăng làm tăng theo quá trình tái tổ hợp của cặp electron và lỗ trống quang sinh, do đó tới một ngưỡng nhất định việc tăng công suất đèn, tăng độ rọi sẽ làm giảm hiệu suất xử lý. Ở đây ta thấy mức “0” của bộ chỉnh dòng, công suất đèn 391,5W là phù hợp, khi sử dụng trong thực tế ta có thể không cần phải sử dụng thêm bộ chỉnh dòng.
3.2.1.6. Ảnh hưởng của bước sóng ánh sáng
Hình 3.44 là đồ thị ảnh hưởng của bước sóng ánh sáng đến khả năng quang xúc tác chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP, quá
trình khảo sát được thực hiện với các nguồn sáng khác nhau bao gồm: đèn mô phỏng ánh sáng mặt trời Xenon 350W, đèn tử ngoại UVA, UVB và UVC (công suất 12W).
Hình 3.44. Đồ thị ảnh hưởng của bước sóng ánh sáng đến khả năng quang xúc tác chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP
Có thể quan sát thấy hiệu quả chuyển hóa với mỗi nguồn đèn là khác nhau. Hiệu quả chuyển hóa đạt cao nhất là đối với đèn mô phỏng ánh sáng mặt trời Xenon 350W, hiệu suất đạt 99,8% sau 90 phút, cũng trong khoảng thời gian này hiệu suất chuyển hóa với đèn UVA, UVB, UVC lần lượt là 91,8; 88,9 và 75,3%. Điều này có thể giải thích là do ảnh hưởng của năng lượng vùng cấm cho nên khi sử dụng các đèn UVA, UVB và UVC có mức năng lượng cao hơn so với mức năng lượng cần thiết, khi kích thích làm quá trình tạo ra electron quang sinh và lỗ trống quang sinh diễn ra nhanh, khiến các hạt mang điện này dễ bị tái tổ hợp ngay sau khi tạo thành, do đó làm giảm hiệu quả xúc tác. Đèn UVA có bước sóng gần bước sóng kích hoạt của vật liệu TFG20 cho nên hiệu suất chuyển hóa cao hơn so với hai loại đèn UV còn lại
3.2.2. Quá trình chuyển hóa Cr(VI)) của vật liệu xúc tác
3.2.2.1. Hiệu quả chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP
Hình 3.45. Đồ thị đánh giá hiệu quả quá trình quang xúc tác chuyển hóa Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP
Như trên hình 3.45, có thể thấy rằng khi được chiếu sáng, hiệu suất chuyển hóa Cr(VI) cao nhất được ghi nhận đối với mẫu TFG20, hiệu suất chuyển hóa thấp nhất là trong trường hợp không sử dụng xúc tác. Quá trình chiếu sáng khi không có mặt chất xúc tác (thể tích etanol sử dụng 0,2 mL (1% thể tích mẫu xử lý), Cr (VI) cũng bị chuyển hóa nhưng lượng Cr(VI) giảm gần như không đáng kể, sau 90 phút phần trăm chuyển hóa chỉ là 11,6%.
Đối với GNP, khi chiếu sáng hàm lượng Cr(VI) suy giảm không đáng kể, sau 90 phút chiếu sáng hàm lượng Cr(VI) chỉ giảm xuống 28,1%. Điều này được giải thích là do hoạt tính xúc tác quang của GNP là thấp. Các mẫu có chứa Ti (TFG0 và TFG20) đều có hoạt tính xúc tác quang cao. Khi có mặt GNP, trong điều kiện chiếu sáng, mẫu TFG20 có hoạt tính cao nhất, điều này chứng tỏ hiệu quả của quá trình tổ hợp 2 oxit Ti và Fe với GNP, GNP với độ dẫn điện cao giúp cho quá trình khuếch tán electron diễn ra nhanh hơn và nhờ đó quá
trình tái tổ hợp electron và lỗ trống quang sinh diễn ra chậm hơn, hiệu quả quang xúc tác của phản ứng tăng lên, hàm lượng Cr(VI) bị khử cao hơn
Mẫu TFG0 cũng có hoạt tính xúc tác quang cao trong vùng ánh sáng khả kiến do đó có thể nói sự kết hợp giữa 2 oxit Fe và Ti đã làm giảm năng lượng vùng cấm (điều này đã được chứng minh bằng các kết quả đo UV-VIS DRS).
3.2.2.2. Tốc độ phản ứng và cơ chế xử lý kim loại nặng của vật liệu tổ hợp TiO2- Fe2O3/GNP
Hằng số tốc độ của quá trình quang xúc tác xử lý Cr (VI) trong môi trường nước với nồng độ loãng được xác định qua phương trình Langmuir– Hinshelwood bậc nhất tuyến tính theo đồ thị mối quan hệ giữa hàm ln(Ct/C0) với thời gian.
kt= -ln(Ct/C0) (3.9)
Trong đó Ct là hàm lượng Cr (VI) tại thời điểm t và C0 là hàm lượng của các ion trên tại thời điểm bắt đầu quá trình xúc tác quang (ở đây chính là thời điểm sau khi đạt hấp phụ cực đại.
Hình 3.46. Mối quan hệ -ln(Co/Ct) với thời gian của quá trình quang xúc tác xử lý Cr(VI) của vật liệu tổ hợp TiO2- Fe2O3/GNP
Đồ thị hình 3.46 chỉ ra rằng mối quan hệ giữa ln(Co/Ct) và thời gian phản ứng (t) là tuyến tính. Điều này cho thấy phản ứng xúc tác tuân theo mô hình động học Langmuir - Hinshelwood với hệ số tương quan cao là 0,987. Hằng số tốc phản ứng thực nghiệm trong trường hợp xử lý Cr (VI) được tính toán là bằng 0,0649 (phút-1). Phương trình động học quang xúc tác xử lý là phương trình giả bậc 1.
Các công trình nghiên cứu trước đây đã chứng minh rằng graphen có thể được sử dụng như vật liệu nền để hỗ trợ và là chất hoạt hóa để nâng cao khả năng phân tách các hạt mang điện (lỗ trống và các electron) nhờ vào việc cản trở quá trình tái tổ hợp của các cặp electron và lỗ trống được tạo ra do quá trình chiếu bức xạ vào hỗn hợp oxit 2 thành phần Fe-Ti, do đó làm tăng thời gian sống của các hạt mang điện [123], [ 33]. Graphen cũng đóng vai trò quan trọng trong việc nâng cao hiệu quả của quá trình hấp phụ kim loại nặng vì sự ảnh hưởng qua lại của quá trình chuyển dịch các hạt mang điện xen giữa các bề mặt một cách dễ dàng với chất bị hấp phụ [32], [ 33].
Trên cơ sở những thảo luận ở trên, kết hợp với các nghiên cứu đã được công bố, cơ chế của quá trình quang xúc tác chuyển hóa kim loại nặng bằng vật liệu tổ hợp TiO2- Fe2O3/GNP trong vùng ánh sáng khả kiến bước đầu được đề xuất trên hình 3.47.
Theo đó, nhờ sự có mặt của Fe, năng lượng vùng cấm của vật liệu bán dẫn tổ hợp 2 oxit TiO2- Fe2O3 được thu hẹp, khi vật liệu tổ hợp được chiếu sáng bằng ánh sáng khả kiến, tạo ra các cặp electron-lỗ trống, các electron được kích hoạt sẽ nhảy từ vùng hóa trị (VB) lên vùng dẫn của vật liệu (CB) [70]. Các electron được tạo thành sau đó di chuyển đến bề mặt của tấm graphen và hỗ trợ quá trình phân tách các hạt mang điện và kết quả là quá trình tái tổ hợp của các electron và lỗ trống sẽ được ngăn chặn.
Các lỗ trống quang sinh sẽ phản ứng với H2O hoặc nhóm OH− để hình thành các gốc tự do OH·, các gốc tự do này sẽ tham gia vào quá trình oxy hóa
các etanol để hình thành các sản phẩm phân hủy trên bề mặt vật liệu tổ hợp 2 oxit TiO2- Fe2O3[31].
Hình 3.47. Mô phỏng cơ chế xúc tác quang chuyển hóa Cr(VI) bằng vật liệu tổ hợp TiO2- Fe2O3/GNP
Mặt khác, các electron được sinh ra cũng tham gia vào quá trình khử các ion Cr (VI) (trong môi trường axit) để hình thành các ion Cr (III) trên bề mặt của tấm GNP [76].
3.2.2.3. Khả năng tái sử dụng vật liệu xúc tác quang
Khả năng tái sử dụng vật liệu quang xúc tác tổ hợp TiO2- Fe2O3/GNP được khảo sát với số lần sử dụng là 5. Tiến hành xử lý với mẫu có nồng độ Cr
(VI) ban đầu là 10 ppm, pH2, sau mỗi khoảng thời gian 90 phút, lấy mẫu đo hiệu suất chuyển hóa, bổ sung lượng dung dịch hao hụt, điều chỉnh nồng độ mẫu về nồng độ ban đầu là 10 ppm.
Kết quả cho thấy, hiệu suất chuyển hóa sau 5 lần chuyển hóa có suy giảm nhưng chỉ dưới 10% từ 99,8% xuống 90,3%. Điều này thể hiện rằng vật liệu quang xúc tác tổ hợp TiO2- Fe2O3/GNP có thể tái sử dụng một cách hiệu quả.
Hình 3.48. Đồ thị đánh giá hiệu quả xử lý Cr(VI) sau 5 lần tái sử dụng
3.3. Định hướng công nghệ xử lý kim loại nặng trong nước thải sản xuất vật liệu nổ quốc phòng.
3.3.1. Nghiên cứu phát triển kỹ thuật sản xuất vật liệu tổ hợp
Trên cơ sở các kết quả nghiên cứu chế tạo vật liệu tổ hợp TiO2- Fe2O3/GNP sơ đồ chế tạo bao gồm các bước chính như trên hình 3.49. Các điều kiện công nghệ cần được xem xét lựa chọn trên cơ sở xác định đặc trưng, tính chất mà quan trọng nhất là khả năng xử lý thành phần độc hại trong nước thải và hiệu suất thu sản phẩm.
Kết quả nghiên cứu thực nghiệm cho thấy với thành phần nguyên liệu tinh quặng ilmenit 52% được cố định, các yếu tố mang tính quyết định đến chất lượng của sản phẩm và hiệu suất quá trình chế tạo bao gồm nhiệt độ thủy nhiệt, thời gian thủy nhiệt, yếu tố khuấy trộn, nồng độ đầu, tỷ lệ các nguyên liệu đầu (giữa GNP và các oxit Ti và Fe).
Bảng 3.8 thể hiện các điều kiện tối ưu cho quá trình tổng hợp đã được đúc rút từ kết quả nghiên cứu