[43] Fidaleo Marcello and Moresi Mauro, "Electrodialysis Applications in The Food Industry", in Advances in Food and Nutrition Research. 2006, Academic Press. p. 265-360.
[44] Fujihira Masamichi, Satoh Yoshiharu, and Osa Tetsuo, "Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2". Nature, (1981). 293: p. 206.
[45] Ganesh Ibram, et al., "Preparation and characterization of Fe-doped TiO2 powders for solar light response and photocatalytic applications". Processing application of ceramics, (2012). 6(1): p. 21-36.
[46] He Ziming, et al., "Nanostructure control of graphene-composited TiO 2 by a one-step solvothermal approach for high performance dye-sensitized solar cells". Nanoscale, (2011). 3(11): p. 4613-4616.
[47] Herrmann J. M., Guillard C., and Pichat P., "Heterogeneous photocatalysis
: an emerging technology for water treatment". Catalysis Today, (1993).
17(1): p. 7-20.
[48] Herrmann Jean-Marie, "Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants". Catalysis today, (1999). 53(1): p. 115-129.
[49] Hieu Nguyen Huu, "Removal of Cd (II) from water by using graphene oxide
Có thể bạn quan tâm!
- Quá Trình Chuyển Hóa Cr(Vi)) Của Vật Liệu Xúc Tác
- Nghiên Cứu Quá Trình Xử Lý Mẫu Nước Thải Thực Tế
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 19
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 21
Xem toàn bộ 173 trang tài liệu này.
- MnFe2O4 magnetic nanohybrids". Vietnam Journal of Science and Technology, (2017). 55(1B): p. 109.
[50] Hieu Nguyen Huu, "Synthesis of zinc oxide/graphene oxide nanocomposites as antibacterial materials against staphylococcus aureus and escherichia coli". Journal of Science and Technology, (2017). 55(1B): p. 266.
[51] Hoffmann Michael R., et al., "Environmental Applications of Semiconductor Photocatalysis". Chemical Reviews, (1995). 95(1): p. 69-96.
[52] Holt Peter K., W.Barton Geoffrey, and A.Mitchell Cynthia, "The future for electrocoagulation as a localised water treatment technology". Chemosphere, (2005). 59(3): p. 355-367.
[53] Hou Ting, et al., "Magnetic ferrous-doped graphene for improving Cr (VI) removal". Materials Research Express, (2016). 3(4): p. 045006.
[54] Hu Changyuan, et al., "A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis". Journal of the Chinese Advanced Materials Society, (2013). 1(1): p. 21-39.
[55] Hu Xinjiang, Wang Hui, and Liu Yunguo, "Statistical analysis of main and interaction effects on Cu (II) and Cr (VI) decontamination by nitrogen– doped magnetic graphene oxide". Scientific reports, (2016). 6: p. 34378.
[56] Hua Ming, et al., "Heavy metal removal from water/wastewater by nanosized metal oxides: A review". Journal of Hazardous Materials, (2012). 211-212: p. 317-331.
[57] Huang Xiaodan, et al., "A facile one‐step solvothermal synthesis of SnO2/graphene nanocomposite and its application as an anode material for lithium‐ion batteries". ChemPhysChem, (2011). 12(2): p. 278-281.
[58] Iijima Sumio, "Helical microtubules of graphitic carbon". nature, (1991).
354(6348): p. 56.
[59] Ince Muharrem, "Comparision of Low-Cost and Eco-Friendly Adsorbent for Adsorption of Ni(II)". Vol. 35. 2014. 223-233.
[60] Ji Fang, et al., "Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries". Journal of Materials Chemistry, (2009). 19(47): p. 9063-9067.
[61] Jiang Baojiang, et al., "Enhanced photocatalytic activity and electron transfer mechanisms of graphene/TiO2 with exposed {001} facets". The Journal of Physical Chemistry C, (2011). 115(48): p. 23718-23725.
[62] Jiang Lijuan, Wang Yajun, and Feng Changgen, "Application of photocatalytic technology in environmental safety". Procedia Engineering, (2012). 45: p. 993-997.
[63] Jüttner K, Galla U, and Schmieder H, "Electrochemical approaches to environmental problems in the process industry". Electrochimica Acta, (2000). 45(15-16): p. 2575-2594.
[64] Kanakaraju Devagi, Lim Ying-Chin, and Pace Andrea, "Concurrent removal of Cr (III), Cu (II), and Pb (II) ions from water by multifunctional TiO2/Alg/FeNPs beads". Sustainable Chemistry Pharmacy, (2019). 14: p. 100176.
[65] Kang So-Young, et al., "Competitive adsorption characteristics of Co2+, Ni2+, and Cr3+ by IRN-77 cation exchange resin in synthesized wastewater". Chemosphere, (2004). 56(2): p. 141-147.
[66] Kim In Young, et al., "A Strong Electronic Coupling between Graphene Nanosheets and Layered Titanate Nanoplates: A Soft‐Chemical Route to Highly Porous Nanocomposites with Improved Photocatalytic Activity". Small, (2012). 8(7): p. 1038-1048.
[67] Koyuncu I., et al., "Advances in water treatment by microfiltration, ultrafiltration, and nanofiltration", in Advances in Membrane Technologies for Water Treatment, A. Basile, A. Cassano, and N.K. Rastogi, Editors. 2015, Woodhead Publishing: Oxford. p. 83-128.
[68] Kurniawan TA and Babel S. "A research study on Cr (VI) removal from contaminated wastewater using low-cost adsorbents and commercial activated carbon". in Second Int. Conf. on Energy Technology towards a Clean Environment (RCETE). 2003.
[69] La Duong, et al., "Graphene-Supported Spinel CuFe2O4 Composites: Novel adsorbents for arsenic removal in aqueous media". Sensors, (2017). 17(6): p. 1292.
[70] La Duong Duc, et al., "Nanostructured charge transfer complex of CuTCNQF4 for efficient photo-removal of hexavalent chromium". RSC Advances, (2016). 6(40): p. 33931-33936.
[71] La Duong Duc, et al., "Arginine-induced porphyrin-based self-assembled nanostructures for photocatalytic applications under simulated sunlight irradiation". Photochemical Photobiological Sciences, (2017). 16(2): p. 151-154.
[72] La Duong Duc, Bhargava Suresh, and Bhosale Sheshanath V, "Improved and a simple approach for mass production of graphene nanoplatelets material". ChemistrySelect, (2016). 1(5): p. 949-952.
[73] La Duong Duc, et al., "Scalable fabrication of modified graphene nanoplatelets as an effective additive for engine lubricant oil". Nanomaterials, (2020). 10(5): p. 877.
[74] Lee Joon Seok, You Kyeong Hwan, and Park Chan Beum, "Highly photoactive, low bandgap TiO2 nanoparticles wrapped by graphene". Advanced Materials, (2012). 24(8): p. 1084-1088.
[75] Lee Shu Chin, Lintang Hendrik O, and Yuliati Leny, "High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2, 4-dichlorophenoxyacetic acid". Beilstein journal of nanotechnology, (2017). 8(1): p. 915-926.
[76] Li Di, et al., "Photocatalytic degradation of acid chrome blue K with porphyrin-sensitized TiO2 under visible light". J. Phys. Chem. C, (2008). 112(38): p. 14878-14882.
[77] Li Na, et al., "Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template‐ free self‐assembly". Advanced Functional Materials, (2011). 21(9): p. 1717- 1722.
[78] Li Yao, et al., "Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction". Applied Catalysis B: Environmental, (2016). 199: p. 412-423.
[79] Linh Ha Xuan, "Preparation of red mud/graphene composite and its application for adsorption of As (III) from aqueous solution". Vietnam Journal of Science and Technology, (2017). 55(4C): p. 217.
[80] Liu Jincheng, et al., "Self‐Assembling TiO2 Nanorods on Large Graphene Oxide Sheets at a Two‐Phase Interface and Their Anti‐Recombination in Photocatalytic Applications". Advanced Functional Materials, (2010). 20(23): p. 4175-4181.
[81] Lu Wen, Baek Jong-Beom, and Dai Liming, "Carbon nanomaterials for advanced energy systems: advances in materials synthesis and device applications". 2015: John Wiley & Sons.
[82] Lui Gregory, et al., "Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance". J Mater Chem A, (2013): p. 12255–12262.
[83] Ma Chih Ming, Shen Yung Shuen, and Lin Po Hsiang, "Photoreduction of Cr (VI) ions in aqueous solutions by UV/TiO2 photocatalytic processes". International Journal of Photoenergy, (2012). 2012.
[84] Marjani Azam, Rezakazemi Mashallah, and Shirazian Saeed, "Simulation of methanol production process and determination of optimum conditions". Oriental Journal of Chemistry, (2012). 28(1): p. 145.
[85] Molinari R., Argurio P., and Lavorato C., "Photocatalytic hydrogenation of organic compounds in membrane reactors", in Membrane Reactors for Energy Applications and Basic Chemical Production, A. Basile, et al., Editors. 2015, Woodhead Publishing. p. 605-639.
[86] Moon Seung-Hyeon and Yun Sung-Hyun, "Process integration of electrodialysis for a cleaner environment". Current Opinion in Chemical Engineering, (2014). 4: p. 25-31.
[87] Murthy Z. V. P. and Chaudhari Latesh B., "Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model". Chemical Engineering Journal, (2009). 150(1): p. 181-187.
[88] Muzyka Roksana, et al., "Characterization of graphite oxide and reduced graphene oxide obtained from different graphite precursors and oxidized by different methods using Raman spectroscopy". Materials, (2018). 11(7): p. 1050.
[89] Nam Pham Thi, et al., "Synthesis of reduced graphene oxide for high- performance supercapacitor". Vietnam Journal of Chemistry, (2018). 56(6): p. 778-785.
[90] Nethravathi C, et al., "Highly dispersed ultrafine Pt and PtRu nanoparticles on graphene: formation mechanism and electrocatalytic activity". Nanoscale, (2011). 3(2): p. 569-571.
[91] Novoselov Kostya S, et al., "Electric field effect in atomically thin carbon films". Science, (2004). 306(5696): p. 666-669.
[92] Ollis David F., "Photocatalytic purification and remediation of contaminated air and water". Comptes Rendus de l'Académie des Sciences
- Series IIC - Chemistry, (2000). 3(6): p. 405-411.
[93] Orhan Yüksel and Kocaoba Sevgi, "Adsorption of Toxic Metals by Natural and Modified Clinoptilolite". Annali di Chimica, (2007). 97(8): p. 781-790.
[94] Padaki M., et al., "Membrane technology enhancement in oil–water separation. A review". Desalination, (2015). 357: p. 197-207.
[95] Paek Seung-Min, Yoo EunJoo, and Honma Itaru, "Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure". Nano letters, (2008). 9(1): p. 72-75.
[96] Qi BC and Aldrich Chris, "Biosorption of heavy metals from aqueous solutions with tobacco dust". Bioresource Technology, (2008). 99(13): p. 5595-5601.
[97] Rosenberg Edward, "Heavy Metals in Water: Presence, Removal and Safety". Johnson Matthey Technology Review, (2015). 59(4): p. 293-297.
[98] Rožić Mirela, et al., "Ammoniacal nitrogen removal from water by treatment with clays and zeolites". Water Research, (2000). 34(14): p. 3675-3681.
[99] Sadyrbaeva T. Zh, "Removal of chromium(VI) from aqueous solutions using a novel hybrid liquid membrane—electrodialysis process". Chemical Engineering and Processing: Process Intensification, (2016). 99: p. 183-191.
[100] Šćiban Marina, et al., "Adsorption of heavy metals from electroplating wastewater by wood sawdust". Bioresource Technology, (2007). 98(2): p. 402-409.
[101] Shen Jianfeng, et al., "One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets". Journal of Materials Chemistry, (2011). 21(10): p. 3415-3421.
[102] Shirazian Saeed, et al., "Hydrodynamics and mass transfer simulation of wastewater treatment in membrane reactors". Desalination, (2012). 286: p. 290-295.
[103] Shirazian Saeed, et al., "Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors". Asia‐Pacific Journal of Chemical Engineering, (2012). 7(6): p. 828-834.
[104] Si Yongchao and Samulski Edward T, "Exfoliated graphene separated by platinum nanoparticles". Chemistry of Materials, (2008). 20(21): p. 6792- 6797.
[105] Sun Shengrui, Gao Lian, and Liu Yangqiao, "Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation". Applied physics letters, (2010). 96(8): p. 083113.
[106] Sutherland Ken, "Developments in filtration: What is nanofiltration?".
Filtration & Separation, (2008). 45(8): p. 32-35.
[107] Thinh Nguyen Duc, et al., "Synthesis of platinum/reduced graphene oxide composite for cathode in dye-sensitized solar cells". Vietnam Journal of Chemistry, (2019). 57(4): p. 411-417.
[108] Thy Lu Thi Mong, et al., "Synthesis of magnetic iron oxide/graphene oxide nanocomposites for removal of cadmium ions from water". Advances in Natural Sciences: Nanoscience, Nanotechnology, (2019). 10(2): p. 025006.
[109] Truong Le Dang, et al., "Synthesis and application of chitosan/graphene oxide/magnetite nanostructured composite for Fe(III) removal from aqueous solution". Vietnam Journal of Science and Technology (2018). 56(2): p. 158-164.
[110] Tsai WT, et al., "Preparation of activated carbons from corn cob catalyzed by potassium salts and subsequent gasification with CO2". Bioresource technology, (2001). 78(2): p. 203-208.
[111] Vigneswaran Saravanamuthu, et al., "Physicochemical treatment processes for water reuse", in Physicochemical treatment processes. 2005, Springer. p. 635-676.