* Hướng nghiên cứu tiếp theo:
Mặc dù các kết quả nghiên cứu đã đạt được mục tiêu đề ra, tuy nhiên để có thể hiểu rõ hơn các vấn đề về cơ chế, cũng như tiến tới ứng dụng kết quả nghiên cứu vào thực tế, luận án cần có những nghiên cứu hoàn thiện sâu hơn đó là:
1. Tiếp tục các nghiên cứu trong phòng thí nghiệm ứng dụng tính chất quang xúc tác của các vật liệu TiO2- Fe2O3/GNP nói chung và vật liệu oxit kim loại/GNP nói riêng để phân tách nước, xử lý kim loại nặng Cr (VI), Pb (II), As
(III) ... các chất hữu cơ độc hại như phẩm màu, các dẫn xuất nitro vòng thơm, nitramin khó phân hủy.
2. Tiếp tục nghiên cứu thiết kế, hoàn thiện các mô hình công nghệ xử lý nước thải sử dụng vật liệu TiO2- Fe2O3/GNP để có thể áp dụng được vào thực tế trên quy mô công nghiệp.
DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC ĐÃ CÔNG BỐ
[CT1]. Truong Ngoc Tuan, Tran Van Chinh, Nguyen Hoang Tuan, Nguyen Thi Hoai Phuong (2018), "Synthesis and characterization of GNP/Ti-Fe binary oxide composite from ilminite of central Viet Nam using hydrothermal method", Vietnam Journal of Science and Technology, 56(2A), pp, 1-10. [CT2]. Truong Ngoc Tuan, Nguyen Thi Hoai Phuong (2018), Tran Van Chinh “Synthesis of TiO2 -Graphen nanoplatelets (TiO2/GNP) composite from ilemenite and natural graphit for photocatalysis in enviroment treatment”, Journal of Military Science and Technology, 57A, pp, 106-111.
[CT3]. Truong Ngoc Tuan, Nguyen Tuan Thinh, Tran Van Chinh, La Duc Duong, Nguyen Thi Hong Phuong, Nguyen Thi Hoai Phuong (2019), " Nghiên cứu chế tạo graphen/Fe2O3-TiO2 compozit và ứng dụng làm vật liệu xúc tác quang hóa cho xử lý chất thải", Tạp chí xúc tác hấp phụ Việt Nam, 8(1), pp, 109-113.
Có thể bạn quan tâm!
- Nghiên Cứu Quá Trình Chuyển Hóa Cr(Vi) Của Vật Liệu Tổ Hợp Tio2- Fe2O3/gnp
- Quá Trình Chuyển Hóa Cr(Vi)) Của Vật Liệu Xúc Tác
- Nghiên Cứu Quá Trình Xử Lý Mẫu Nước Thải Thực Tế
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 20
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 21
Xem toàn bộ 173 trang tài liệu này.
[CT4]. Nguyễn Bá Cường,Trần Văn Chinh, Lê Phương Thảo, Trương Ngọc Tuấn, Nguyễn Thị Hoài Phương (2019), “Đánh giá khả năng loại bỏ sắt và lưu huỳnh trong quá trình chế tạo TiO2 từ quặng ilmenit bằng kỹ thuật thủy phân”, Tạp chí Hóa học, 57, pp, 238-241.
[CT5]. Nguyễn Thị Hoài Phương, Lã Đức Dương, Trương Ngọc Tuấn, Trần Văn Chinh, Nguyễn Anh Tuấn (2019), “Nghiên cứu chế tạo vật liệu tổ hợp TiO2-Fe/GNP ứng dụng xử lý Cr(VI) trong nước dưới ánh sáng mặt trời”, Hội nghị Vật lý chất rắn khoa học vật liệu toàn quốc, 1, pp, 327-331.
[CT6]. Ngoc Tuan Truong, Hoai Phuong Nguyen Thi, Ha Duc Ninh, Xuan Thinh Phung, Chinh Van Tran, Thanh Tung Nguyen, Tien Dung Pham, Trung Dung Dang, S. Woong Chang, Eldon R. Rene, Huu Hao Ngo, D. Duc Nguyen, Duong Duc La (2020), “Facile fabrication of graphen@Fe-Ti binary oxide nanocomposite from ilmenite ore: An effective photocatalyst for dye
degradation under visible light irradiation”, Journal of Water Process Engineering, 37, pp, 101474-101482.
[CT7]. Trương Ngọc Tuấn, Hoàng Bảo Long, Nguyễn Thị Hoài Phương, Phùng Xuân Thịnh, (2020), “Nghiên cứu ảnh hưởng của một số yếu tố tổng hợp đến hoạt tính xúc tác quang của vật liệu tổ hợp TiO2-Fe2O3/GNP”, Tạp chí Nghiên cứu KH&CN quân sự, Số Đặc san Hội thảo Quốc gia FEE, 10-2020, 337-347
[CT8]. Trương Ngọc Tuấn, Nguyễn Thị Hoài Phương, Phùng Xuân Thịnh (2020), “Nghiên cứu quá trình xử lý Cr(VI) trong môi trường nước bằng vật liệu tổ hợp 2 oxit Ti-Fe/GNP”, Tạp chí Phân tích Hóa, Lý và Sinh học, Số đặc biệt T-26, 2021, 147-153.
TÀI LIỆU THAM KHẢO
Tiếng Việt
[1] Hoàng Văn Bính, "Độc chất học công nghiệp và dự phòng nhiễm độc". 2007: Nhà xuất bản khoa học và kỹ thuật.
[2] Nguyễn Thị Diệu Cẩm, "Điều chế TiO2 từ quặng ilmenit Bình Định bằng tác nhân phân giải quặng KOH nhằm ứng dụng xúc tác phân hủy các chất hữu cơ ô nhiễm". Vietnam Journal of Science and Technology, (2018). 54: tr. 56.
[3] Đặng Kim Chi, "Hóa học môi trường". 1999: Nhà xuất bản khoa học và kỹ thuật.
[4] Lê Sỹ Chính và cộng sự, "Đánh giá khả năng xử lý kim loại nặng trong nước sử dụng vật liệu chế tạo từ bùn thải mỏ chế biến sắt". Tạp chí Khoa học Trái đất và Môi trường, (2016). 32.
[5] Trần Văn Chinh và Nguyễn Thị Hoài Phương, "Nghiên cứu chế tạo TiO2 từ quặng Ilmenite bằng phương pháp hydrosunphat". Tạp chí Khoa học và Công nghệ Việt Nam, (2017). 14(3).
[6] Bùi Thanh Duy và cộng sự, "Chế tạo điện cực graphen-hạt nano bạc cho phản ứng điện xúc tác phân tách hydro". Vietnam Journal of Catalysis and Adsorption, (2017). 6(2): tr. 54-58.
[7] Nguyễn Cao Khang và cộng sự, "Nghiên cứu cấu trúc, tính chất quang xúc tác của vật liệu tổ hợp TiO2 pha tạp N với graphene". Tạp chí Nghiên cứu KH&CN quân sự, (2018). 4: tr. 187-192.
[8] Đỗ Ngọc Khuê, "Công nghệ xử lý các chất thải nguy hại phát sinh từ hoạt động quân sự". 2010: Nhà xuất bản Quân đội nhân dân.
[9] Nguyễn Tất Lâm, "Nghiên cứu điều chế TiO2 và TiO2 biến tính từ quặng ilmenite nhằm ứng dụng làm xúc tác phân hủy một số hợp chất hữu cơ độc
hại trong môi trường nước". 2017, Đại học Khoa học Tự nhiên/ Đại học Quốc gia Hà Nội.
[10] Nguyễn Thị Lan, "Nghiên cứu điều chế vật liệu (C, N, S)-TiO2 từ quặng ilmenit Bình Định ứng dụng xử lý nước thải nuôi tôm". 2020, Đại học Quy Nhơn.
[11] Lê Thị Phương Thảo, Nguyễn Thị Hoài Phương và Trần Văn Chinh, "Nghiên cứu chế tạo TiO2 từ quặng ilmenite bằng phương pháp amoni sunphat". Tạp chí Hóa học, (2017). 55(5E1): tr. 119-123.
[12] Tổng cục Công nghiệp Quốc phòng, "Báo cáo tác động môi trường dự án "Đầu tư dây chuyền sản xuất ngòi đạn pháo Nhà máy Z129". 2017.
[13] Tổng cục Công nghiệp Quốc phòng, "Báo cáo tác động môi trường dự án "Di dời Xí nghiệp tổng lắp vũ khí - giai đoạn 1" của nhà máy Z131/TCCNQP". 2021.
[14] Tổng cục Công nghiệp Quốc phòng, "Báo cáo tác động môi trường dự án "Đầu tư tiềm lực nghiên cứu, chế tạo, thử nghiệm thuốc nổ, thuốc hỏa thuật và nhiên liệu tên lửa" Viện Thuốc phóng Thuốc nổ/TCCNQP". 2021.
[15] Hồ Thị Tuyết Trinh, Mai Thanh Tâm và Hà Thúc Huy, "Tổng hợp vật liệu hạt nano oxit sắt từ trên nền graphen". Science & Technology Development, (2015): tr. 166-176.
[16] Nguyễn Mạnh Tường và cộng sự, "Nghiên cứu khả năng hấp phụ một số kim loại nặng trong nước bằng vật liệu nano compozit GO/MnO2 ". Tạp chí phân tích Hóa, Lý và Sinh học, (2017). 3(2):tr. 6-13.
Tiếng Anh
[17] Abdel-Halim SH, Shehata AMA, and El-Shahat MF, "Removal of lead ions from industrial waste water by different types of natural materials". Water Research, (2003). 37(7): p. 1678-1683.
[18] Akhavan O and Ghaderi E, "Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation". The Journal of Physical Chemistry C, (2009). 113(47): p. 20214-20220.
[19] Al-Saleh Mohammad A, et al., "Polypropylene/graphene nanocomposites: Effects of GNP loading and compatibilizers on the mechanical and thermal properties". Materials, (2019). 12(23): p. 3924.
[20] Ameta Suresh and Ameta Rakshit, "Advanced oxidation processes for wastewater treatment: emerging green chemical technology". 2018: Academic press.
[21] Amoa Kwesi, "Catalytic Hydrogenation of Maleic Acid at Moderate Pressures". Journal of Chemical Education, (2007). 84(12): p. 1948.
[22] Anh Nguyen Duy, "Study on synthesis of MnFe2O4/GNPs composite and application on heavy metal removal". Vietnam Journal of Science and Technology, (2018). 56(1A): p. 204.
[23] Arribas P., et al., "Novel and emerging membranes for water treatment by electric potential and concentration gradient membrane processes", in Advances in Membrane Technologies for Water Treatment, A. Basile, A. Cassano, and N.K. Rastogi, Editors. 2015, Woodhead Publishing: Oxford. p. 287-325.
[24] Bai Xue, et al., "Enhancement of the photocatalytic synchronous removal of Cr (VI) and RhB over RP-modified flower-like SnS2". Nanoscale Advances, (2020). 2(9): p. 4220-4228.
[25] Bai Xue, et al., "Synergy removal of Cr (VI) and organic pollutants over RP- MoS2/rGO photocatalyst". Applied Catalysis B: Environmental, (2018). 239: p. 204-213.
[26] Balandin A. A., et al., "Superior thermal conductivity of single-layer graphene". Nano Lett, (2008). 8(3): p. 902-7.
[27] Bhanvase B.A., Shende T.P., and Sonawane S.H., "A review on graphene– TiO2 and doped graphene–TiO2 nanocomposite photocatalyst for water and wastewater treatment". Environmental Technology Reviews, (2016). 6: p. 11-14.
[28] Buxton George V, et al., "Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅ OH/⋅ O− in Aqueous Solution". Journal of physical chemical reference data, (1988). 17(2): p. 513-886.
[29] Chen Dingwang and Ray Ajay K, "Removal of toxic metal ions from wastewater by semiconductor photocatalysis". Chemical Engineering Science, (2001). 56(4): p. 1561-1570.
[30] Chen Xiaobo and S.Mao Samuel, "Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications". Chem. Rev, (2007). vol 107: p. pp 2891 ÷ 2959.
[31] Chen Yingzhi, et al., "Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible- light photocatalytic activity". Nanoscale, (2014). 6(2): p. 978-985.
[32] Chen Yingzhi, et al., "One-step growth of organic single-crystal p–n nano- heterojunctions with enhanced visible-light photocatalytic activity". Chemical Communications, (2013). 49(80): p. 9200-9202.
[33] Chen Yingzhi, et al., "Porphyrin-Based Nanostructures for Photocatalytic Applications". Nanomaterials, (2016). 6(3): p. 51.
[34] Chen Zengping, et al., "One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr (VI) and Cr (III)". Journal of hazardous materials, (2016). 310: p. 188-198.
[35] Cho Min, et al., "Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection". Water Research, (2004). 38(4): p. 1069-1077.
[36] Choi Wonyong, "Pure and Modified TiO2 Photocatalysts and Their Environmental Applications". Vol. 10. 2006.
[37] da Mota Izabel de Oliveira, et al., "Study of electroflotation method for treatment of wastewater from washing soil contaminated by heavy metals". Journal of Materials Research Technology, (2015). 4(2): p. 109-113.
[38] Da̧browski Azpe, et al., "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method". Chemosphere, (2004). 56(2): p. 91-106.
[39] Du Jiang, et al., "Hierarchically ordered macro− mesoporous TiO2− graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities". ACS nano, (2010). 5(1): p. 590-596.
[40] Du Jimin, et al., "A facile method for synthesis of N-doped TiO2 nanooctahedra, nanoparticles, and nanospheres and enhanced photocatalytic activity". Applied surface science, (2013). 273: p. 278-286.
[41] Fane A. G., Tang C. Y., and Wang R., "Membrane Technology for Water: Microfiltration, Ultrafiltration, Nanofiltration, and Reverse Osmosis", in Treatise on Water Science, P. Wilderer, Editor. 2011, Elsevier: Oxford. p. 301-335.
[42] Ferreira Sérgio LC, et al., "Nickel determination in saline matrices by ICP- AES after sorption on Amberlite XAD-2 loaded with PAN". Talanta, (1999). 48(5): p. 1173-1177.