127. X. Song, Z. Xiong, L. Kong, G. Wang, L. Ai, Relationship Between Putative eps Genes and Production of Exopolysaccharide in Lactobacillus casei LC2W, Frontiers in Microbiology, 2018, 9, 1882-1894.
128. I. Boels, R. van Kranenburg, M. Kanning, B. Chong, W. De Vos, M. Kleerebezem, Increased Exopolysaccharide Production in Lactococcus lactis due to Increased Levels of Expression of the NIZO B40 eps Gene Cluster, Applied and Environmental Microbiology, 2003, 69, 5029-5031.
129. J. Cerning, C. Renard, J. Thibault, C. Bouillanne, M. Landon, M. Desmazeaud,
L. Topisirovic, Carbon Source Requirements for Exopolysaccharide Production by Lactobacillus casei CG11 and Partial Structure Analysis of the Polymer, Applied and Environmental Microbiology, 1994, 60, 3914-3919.
130. F. Levander, M. Svensson, P. Rådström, Enhanced Exopolysaccharide Production by Metabolic Engineering of Streptococcus thermophilus, Applied and Environmental Microbiology, 2002, 68, 784-790.
131. R. van Kranenburg, H. Vos, I. Swam, M. Kleerebezem, W. De Vos, Functional Analysis of Glycosyltransferase Genes from Lactococcus lactis and Other Gram- Positive Cocci: Complementation, Expression, and Diversity, Journal of Bacteriology, 1999, 181, 6347-6353.
132. K. Bouazzaoui, G. LaPointe, Use of antisense RNA to modulate glycosyltransferase gene expression and exopolysaccharide molecular mass in Lactobacillus rhamnosus, Journal of Microbiological Methods, 2006, 65, 216- 225.
133. D. I, D. Gottardi, C. Montanari, A. Gianotti, Dynamic Stresses of Lactic Acid Bacteria Associated to Fermentation Processes, Health and Livestock Purposes, Marcelino Kongo, IntechOpen, 2013, https://www.intechopen.com/chapters/42318.
134. M. Mbye, M.A. Baig, S.F. AbuQamar, K.A. El-Tarabily, R.S. Obaid, T.M. Osaili, A.A. Al-Nabulsi, M.S. Turner, N.P. Shah, M.M. Ayyash, Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses, Comprehensive Reviews in Food Science and Food Safety, 2020, 19 (3), 1110-1124.
135. S. Liu, Y. Ma, Y. Zheng, W. Zhao, X. Zhao, T. Luo, J. Zhang, Z. Yang, Cold- Stress Response of Probiotic Lactobacillus plantarum K25 by iTRAQ Proteomic Analysis, Journal of Microbiology and Biotechnology, 2020, 30 (2), 187-195.
Có thể bạn quan tâm!
- Thay Đổi Biểu Hiện Mrna Của Các Gen Liên Quan Tổng Hợp Eps Dưới Tác Động Của Các Thách Thức Môi Trường So Với Điều Kiện Không Gây Stress
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 15
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 16
- Phân Tích Duncan Khả Năng Sản Xuất Eps Của Các Chủng Lab Phân Lập Được
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 19
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 20
Xem toàn bộ 169 trang tài liệu này.
136. D.W. Grogan, J.E. Cronan, Cyclopropane ring formation in membrane lipids of bacteria, Microbiology and Molecular Biology Reviews, 1997, 61 (4), 429-441.
137. B. Pérez, N. El Bakali, N. Caballero, S. Ennahar, P. Horvatovich, C. Knapp, A. Gálvez, H. Abriouel, Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features, Food Microbiology, 2018, 72, 31-38.
138. M.M. Palomino, P.M. Waehner, J. Fina Martin, P. Ojeda, L. Malone, C. Sánchez Rivas, M. Prado Acosta, M.C. Allievi, S.M. Ruzal, Influence of osmotic stress on the profile and gene expression of surface layer proteins in Lactobacillus acidophilus ATCC 4356, Applied Microbiology and Biotechnology, 2016, 100 (19), 8475-8484.
139. D. Amund, L. Ouoba, J. Sutherland, H. Ghoddusi, Assessing the effects of exposure to environmental stress on some functional properties of Bifidobacterium animalis ssp. lactis, Beneficial Microbes, 2014, 5, 1-9.
140. P. Ruas-Madiedo, J. Hugenholtz, P. Zoon, An overview of the functionality of exopolysaccharides produced by lactic acid bacteria, International Dairy Journal, 2002, 12 (2), 163-171.
141. N. Huu Thanh, H. Razafindralambo, C. Blecker, C. N Yapo, P. Thonart, F. Delvigne, Stochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze-drying, Biochemical Engineering Journal, 2014, 88, 85-94.
142. C. Schwab, Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilization, stress tolerance and biofilm formation, Bacterial Polysaccharides: Current Innovations and Future Trends, 2005, 35, 263-278.
143. M. Fedorová, R. Nemcová, D. Mudroňová, E. Styková, M. Brudňáková, K. Reiffová, Exopolysaccharides May Increase Gastrointestinal Stress Tolerance of Lactobacillus reuteri, Folia Veterinaria, 2018, 62 (4), 24-32.
144. H. Boke, B. Aslim, G. Alp Avci, The role of resistance to bile salts and acid tolerance of exopolysaccharides (EPSS) produced by yogurt starter bacteria, Archives of Biological Sciences, 2010, 62, 323-328.
145. H. Donoghue, H. Newman, Effect of glucose and sucrose on survival in batch culture of Streptococcus mutans C67-1 and a noncariogenic mutant, C67-25, Infection and Immunity, 1976, 13, 16-21.
146. H. Kubota, S. Senda, N. Nomura, H. Tokuda, H. Uchiyama, Biofilm Formation by Lactic Acid Bacteria and Resistance to Environmental Stress, Journal of Bioscience and Bioengineering, 2008, 106 (4), 381-386.
147. C.J. Charles, S.P. Rout, K.A. Patel, S. Akbar, A.P. Laws, B.R. Jackson, S.A. Boxall, P.N. Humphreys, Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments, Applied and Environmental Microbiology, 2017, 83 (6), 02985-02916.
148. M.Z. Silvia-Simona GROSU-TUDOR, Exopolysaccharide production by selected lactic acid bacteria isolated from fermented vegetables, Scientific Bulletin. Series F. Biotechnologies, 2014, 18, 107-114.
149. P. Seesuriyachan, Statistical modeling and optimization for exopolysaccharide production by Lactobacillus confusus in submerged fermentation under high salinity stress, Food Science and Biotechnology, 2012, 21, 1647-1654.
150. P. Seesuriyachan, A. Kuntiya, P. Hanmoungjai, C. Techapun, T. Chaiyaso, N. Leksawasdi, Optimization of exopolysaccharide overproduction by Lactobacillus confusus in solid state fermentation under high salinity stress, Bioscience, Biotechnology, and Biochemistry, 2012, 76 (5), 912-917.
151. M.I. Torino, E.M. Hébert, F. Mozzi, G. Font de Valdez, Growth and exopolysaccharide production by Lactobacillus helveticus ATCC 15807 in an adenine-supplemented chemically defined medium, Journal of Applied Microbiology, 2005, 99 (5), 1123-1129.
152. Y. Pan, F. Breidt, L. Gorski, Synergistic Effects of Sodium Chloride, Glucose, and Temperature on Biofilm Formation by Listeria monocytogenes Serotype 1/2a and 4b Strains, Applied and Environmental Microbiology, 2010, 76, 1433-1441.
153. O. Morales, A. López-Cortés, G. Hernandez-Duque, P. Crassous, J. Guezennec, Extracellular polymers of microbial communities colonizing limestone surfaces, Methods in Enzymology, 2001, 336, 331-339.
154. K. Ninomiya, K. Matsuda, T. Kawahata, T. Kanaya, M. Kohno, Y. Katakura, M. Asada, S. Shioya, Effect of CO2 concentration on the growth and exopolysaccharide production of Bifidobacterium longum cultivated under anaerobic conditions, Journal of Bioscience and Bioengineering, 2009, 107 (5), 535-537.
155. E.F. Santillan, T. Shanahan, C. Omelon, J. Major, P. Bennett, Isolation and characterization of a CO2-tolerant Lactobacillus strain from Crystal Geyser, Utah, U.S.A, Frontiers in Earth Science, 2015, 3, 41-53.
156. J. Prasad, P. McJarrow, P. Gopal, Heat and Osmotic Stress Responses of Probiotic Lactobacillus rhamnosus HN001 (DR20) in Relation to Viability after Drying, Applied and Environmental Microbiology, 2003, 69, 917-925.
157. M. Zago, M. Fornasari, D. Carminati, P. Burns, V. Suárez, G. Vinderola, J. Reinheimer, G. Giraffa, Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses, Food Microbiology, 2011, 28, 1033-1040.
158. N. Jamaly, A. Benjouad, M. Bouksaim, Probiotic potential of Lactobacillus strains isolated from known popular traditional moroccan dairy products, British Microbiology Research Journal, 2011, 1, 79-94.
159. S. Arioli, P. Roncada, A.M. Salzano, F. Deriu, S. Corona, S. Guglielmetti, L. Bonizzi, A. Scaloni, D. Mora, The relevance of carbon dioxide metabolism in Streptococcus thermophilus, Microbiology, 2009, 155, 1953-1965.
160. K. Ninomiya, T. Matsuda K Fau - Kawahata, T. Kawahata T Fau - Kanaya, M. Kanaya T Fau - Kohno, Y. Kohno M Fau - Katakura, M. Katakura Y Fau - Asada, S. Asada M Fau - Shioya, S. Shioya, Effect of CO2 concentration on the growth and exopolysaccharide production of Bifidobacterium longum cultivated under anaerobic conditions, Journal of Bioscience and Bioengineering, 2009, 107 (5), 535-537.
161. F. Hao, N. Fu, H. Ndiaye, M.W. Woo, R. Jeantet, X.D. Chen, Thermotolerance, Survival, and Stability of Lactic Acid Bacteria After Spray Drying as Affected by
the Increase of Growth Temperature, Food and Bioprocess Technology, 2021, 14 (1), 120-132.
162. H.T. Nguyen, H. Razafindralambo, C. Blecker, C. N’Yapo, P. Thonart, F. Delvigne, Stochastic exposure to sub-lethal high temperature enhances exopolysaccharides (EPS) excretion and improves Bifidobacterium bifidum cell survival to freeze–drying, Biochemical Engineering Journal, 2014, 88, 85-94.
163. M.C. Collado, Y. Sanz, Induction of acid resistance in Bifidobacterium: A mechanism for improving desirable traits of potentially probiotic strains, Journal of Applied Microbiology, 2007, 103, 1147-1157.
164. J. Jin, H. Guo, J. Cui, L. Jiang, S. Song, M. Sun, F. Ren, Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing, PLOS ONE, 2012, 7, 50777- 50789.
165. C. Hidalgo-Cantabrana, B. Sánchez, C. Milani, M. Ventura, A. Margolles, P. Ruas-Madiedo, Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp, Applied and Environmental Microbiology, 2014, 80 (1), 9-18.
166. C.R. Desmond, R.P. Ross, E.O. O'Callaghan, G. Fitzgerald, C. Stanton, Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia, Journal of Applied Microbiology, 2002, 93, 1003-1011.
167. K. Nandal, A.R. Sehrawat, A.S. Yadav, R.K. Vashishat, K.S. Boora, High temperature-induced changes in exopolysaccharides, lipopolysaccharides and protein profile of heat-resistant mutants of Rhizobium sp. (Cajanus), Microbiological Research, 2005, 160 (4), 367-373.
168. S. Ozturk, B. Aslim, Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress, Environmental Science and Pollution Research, 2010, 17 (3), 595-602.
169. X. Zou, M. Sun, X. Guo, Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium, World Journal of Microbiology and Biotechnology, 2006, 22, 1129-1133.
170. S. Mills, C. Stanton, G.F. Fitzgerald, R. Ross, Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again, Microbial Cell Factories, 2011, 10 (1), 19-31.
171. E. Hüfner, R. Britton, S. Roos, H. Jonsson, C. Hertel, Global transcriptional response of Lactobacillus reuteri to the sourdough environment, Systematic and Applied Microbiology, 2008, 31, 323-338.
172. J. Jin, B. Zhang, H. Guo, J. Cui, L. Jiang, S. Song, M. Sun, F. Ren, Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing, PLOS ONE, 2012, 7 (12), 50777-50794.
173. T. Wall, K. Båth, R. Britton, H. Jonsson, J. Versalovic, S. Roos, The Early Response to Acid Shock in Lactobacillus reuteri Involves the ClpL Chaperone and a Putative Cell Wall-Altering Esterase, Applied and Environmental Microbiology, 2007, 73, 3924-3935.
174. P. Ruas-Madiedo, M. Gueimonde, F. Arigoni, C. De los Reyes-Gavilán, A. Margolles, Bile Affects the Synthesis of Exopolysaccharides by Bifidobacterium animalis, Applied and Environmental Microbiology, 2009, 75, 1204-1207.
175. Q. Wu, N.P. Shah, Comparative mRNA-Seq Analysis Reveals the Improved EPS Production Machinery in Streptococcus thermophilus ASCC 1275 During Optimized Milk Fermentation, Frontiers in Microbiology, 2018, 9, 445-465.
176. G.T. Lu, J.R. Xie, L. Chen, J.R. Hu, S.Q. An, H.Z. Su, J.X. Feng, Y.Q. He, B.L. Jiang, D.J. Tang, et al., Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence, Microbiology, 2009, 155 (5), 1602-1612.
177. W. Guo, J. Gao, H.-J. Wang, R.-Y. Su, C.-Y. Sun, S.-H. Gao, J. Liu, G.-Y. Chen, Phosphoglycerate Kinase Is Involved in Carbohydrate Utilization, Extracellular Polysaccharide Biosynthesis, and Cell Motility of Xanthomonas axonopodis pv. glycines Independent of Clp, Frontiers in Microbiology, 2020, 11, 77-85.
178. J.C. De Man, M. Rogosa, M.E. Sharpe, A medium for the cultivation of lactobacilli, Journal of Applied Bacteriology, 1960, 23 (1), 130-135.
179. A.W. Nongpanga Khunajakr, Duangtip Moonmangmee and Sukon Tantipaiboonvut, Screening and identification of lactic acid bacteria producing antimicrobial compounds from pig gastrointestinal tracts, KMITL Science and Technology Journal, 2008, 8 (1), 8-17.
180. Y. Masumizu, B. Zhou, A. Kober, M.A. Islam, H. Iida, W. Ikeda-Ohtsubo, Y. Suda, L. Albarracin, T. Nochi, H. Aso, et al., Isolation and Immunocharacterization of Lactobacillus salivarius from the Intestine of Wakame-Fed Pigs to Develop Novel "Immunosynbiotics", Microorganisms, 2019, 7 (6), 98-116.
181. S. Torriani, G.E. Felis, F. Dellaglio, Differentiation of Lactobacillus plantarum,
L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers, Applied and Environmental Microbiology, 2001, 67 (8), 3450-3454.
182. N. Salazar, P. Ruas-Madiedo, S. Kolida, M. Collins, R. Rastall, G. Gibson, C.G. de los Reyes-Gavilán, Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human faecal microbiota in pH-controlled batch cultures, International Journal of Food Microbiology, 2009, 135 (3), 260- 267.
183. M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, 1976, 72 (1), 248-254.
184. G. Montel Mendoza, S.E. Pasteris, M.C. Otero, M.E. Fatima Nader-Macias, Survival and beneficial properties of lactic acid bacteria from raniculture subjected to freeze-drying and storage, Journal of Applied Microbiology, 2014, 116 (1), 157-166.
185. Y. Yuan, Y.-B. Wang, Y. Jiang, K.N. Prasad, J. Yang, H. Qu, Y. Wang, Y. Jia,
H. Mo, B. Yang, Structure identification of a polysaccharide purified from Lycium barbarium fruit, International Journal of Biological Macromolecules, 2016, 82, 696-701.
186. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, 2001, 25 (4), 402-408.
187. Mai Đàm Linh, Đỗ Minh Phương, Phạm Thị Tuyết, Kiều Hữu Ảnh, Nguyễn Thị Giang, Đặc điểm sinh học của các chủng vi khuẩn lactic phân lập trên địa bàn thành phố Hà Nội, Tạp chí Khoa học ĐHQGHN, 2008, 24, 221-226.
188. Huỳnh Ngọc Tâm, Trần Thanh Trúc, Nguyễn Văn Mười, Hà Thanh Toàn, Phân lập và tuyển chọn dòng vi khuẩn lactic có khả năng kháng khuẩn từ dưa lê non (Cucumis melo L.) muối chua, Can Tho University Journal of Science, 2016, 18, 18-24.
189. A. Marroki, M. Zúđiga Cabrera, K. Mebrouk, G. Pérez Martínez, Characterization of lactobacillus from algerian goat's milk based on phenotypic, 16S rDNA sequencing and their technological properties, Brazilian Journal of Microbiology, 2011, 42, 158-171.
190. T. Zotta, A. Ricciardi, F. Ciocia, R. Rossano, E. Parente, Diversity of stress responses in dairy thermophilic streptococci, International Journal of Food Microbiology, 2008, 124, 34-42.
191. H. Stack, N. Kearney, C. Stanton, G. Fitzgerald, R. Ross, Association of Beta- Glucan Endogenous Production with Increased Stress Tolerance of Intestinal Lactobacilli, Applied and Environmental Microbiology, 2009, 76, 500-507.
192. S. Aquino, D. Stuckey, Characterization of soluble microbial products (SMP) in effluents from anaerobic reactors, Water Science and Technology, 2002, 45, 127-132.
193. M. Garcia-Garibay, V.M.E. Marshall, Polymer production by Lactobacillus delbrueckii ssp. bulgaricus, Journal of Applied Bacteriology, 1991, 70 (4), 325- 328.
194. H.D. Donoghue, H.N. Newman, Effect of glucose and sucrose on survival in batch culture of Streptococcus mutans C67-1 and a noncariogenic mutant, C67- 25, Infection and Immunity, 1976, 13 (1), 16-21.
195. R. Tallon, P. Bressollier, M.C. Urdaci, Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56, Research in Microbiology, 2003, 154 (10), 705-712.