196. L.E. London, N.P. Price, P. Ryan, L. Wang, M.A. Auty, G.F. Fitzgerald, C. Stanton, R.P. Ross, Characterization of a bovine isolate Lactobacillus mucosae DPC 6426 which produces an exopolysaccharide composed predominantly of mannose residues, Journal of Applied Microbiology, 2014, 117 (2), 509-517.
197. F. Donot, A. Fontana, J.C. Baccou, S. Schorr-Galindo, Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction, Carbohydrate Polymers, 2012, 87 (2), 951-962.
198. G. Melgar-Lalanne, Y. Rivera-Espinoza, R. Farrera-Rebollo, H. Hernandez, Survival under stress of halotolerant Lactobacilli with probiotic properties, Revista Mexicana de Ingeniería Química, 2014, 13, 1-13.
199. F. Arsène-Ploetze, F. Bringel, Role of inorganic carbon in lactic acid bacteria metabolism, Dairy Science and Technology, 2004, 84, 49-59.
200. M.J.A. Stevens, A. Wiersma, W.M. de Vos, O.P. Kuipers, E.J. Smid, D. Molenaar, M. Kleerebezem, Improvement of <em>Lactobacillus plantarum</em> Aerobic Growth as Directed by Comprehensive Transcriptome Analysis, Applied and Environmental Microbiology, 2008, 74 (15), 4776-4787.
201. E. Franklin, M. Jonikas, Increasing the uptake of carbon dioxide, Elife, 9, 64380- 64394.
202. B. Ebel, F. Martin, L.D.T. Le, P. Gervais, R. Cachon, Use of gases to improve survival of Bifidobacterium bifidum by modifying redox potential in fermented milk, Journal of Dairy Science, 2011, 94 (5), 2185-2191.
203. B. Buck, M. Azcárate-Peril, T. Klaenhammer, Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus, Journal of Applied Microbiology, 2009, 107, 269-279.
204. Y. Rahbar Saadat, A. Yari Khosroushahi, B. Pourghassem Gargari, A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides, Carbohydrate Polymers, 2019, 217, 79-89.
205. P.J. Looijesteijn, L. Trapet, E.d. Vries, T. Abee, J. Hugenholtz, Physiological function of exopolysaccharides produced by Lactococcus lactis, International Journal of Food Microbiology, 2001, 64, 71-80.
206. L. Liu, J. Wu, J. Zhang, Z. Li, C. Wang, M. Chen, Y. Wang, Y. Sun, L. Wang, C. Luo, A compatibility assay of ursolic acid and foodborne microbial exopolysaccharides by antioxidant power and anti-proliferative properties in hepatocarcinoma cells, Journal of Food, Agriculture and Environment, 2012, 10, 111-114.
207. Z. Zhang, Q. Zhang, J. Wang, X. Shi, H. Song, J. Zhang, In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from Porphyra haitanensis, Carbohydrate Polymers, 2009, 78 (3), 449- 453.
208. D. Wei, W. Cheng, Y. Wei, L. Zhang, Phosphorylated modification and in vitro antioxidant activity of Radix Hedysari polysaccharide, Glycoconjugate Journal, 2012, 29 (4), 167-172.
209. J. Wang, S. Hu, S. Nie, Q. Yu, M. Xie, Reviews on Mechanisms of In Vitro Antioxidant Activity of Polysaccharides, Oxidative Medicine and Cellular Longevity, 2016, 2016, 5692852-5692865.
210. R.J. Elias, S.S. Kellerby, E.A. Decker, Antioxidant Activity of Proteins and Peptides, Critical Reviews in Food Science and Nutrition, 2008, 48 (5), 430-441.
211. J. Lee, H. Yun, k.-w. Cho, S. Oh, S. Kim, T. Chun, B. Kim, K. Whang, Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: Immune modulation and longevity, International Journal of Food Microbiology, 2011, 148, 80-86.
212. R. Huang, X. Tao, C. Wan, S. Li, H. Xu, F. Xu, N.P. Shah, H. Wei, In vitro probiotic characteristics of Lactobacillus plantarum ZDY 2013 and its modulatory effect on gut microbiota of mice, Journal of Dairy Science, 2015, 98 (9), 5850-5861.
213. M. Manzanera, Dealing with water stress and microbial preservation, Environmental Microbiology, 2021, 23 (7), 3351-3359.
214. F.D. Bello, J. Walter, C. Hertel, W.P. Hammes, In vitro study of Prebiotic Properties of Levan-type Exopolysaccharides from Lactobacilli and Non- digestible Carbohydrates Using Denaturing Gradient Gel Electrophoresis, Systematic and Applied Microbiology, 2001, 24 (2), 232-237.
215. E.B. O'Connor, E. Barrett, G. Fitzgerald, C. Hill, C. Stanton, R.P. Ross, Production of Vitamins, Exopolysaccharides and Bacteriocins by Probiotic Bacteria, Probiotic Dairy Products, 2006, 167-194.
216. H. Tsuda, T. Miyamoto, Production of Exopolysaccharide by Lactobacillus plantarum and the Prebiotic Activity of the Exopolysaccharide, Food Science and Technology Research, 2010, 16, 87-92.
217. D. Das, R. Baruah, A. Goyal, A food additive with prebiotic properties of an alpha-D-glucan from Lactobacillus plantarum DM5, International Journal of Biological Macromolecules, 2014, 69, 20–26.
218. T. Hongpattarakere, N. Cherntong, S. Wichienchot, S. Kolida, R.A. Rastall, In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria, Carbohydrate Polymers, 2012, 87 (1), 846-852.
219. B. Nicolaus, M. Kambourova, E.T. Oner, Exopolysaccharides from extremophiles: from fundamentals to biotechnology, Environmental Technology, 2010, 31 (10), 1145-1158.
220. A. Poli, P. Di Donato, G.R. Abbamondi, B. Nicolaus, Synthesis, Production, and Biotechnological Applications of Exopolysaccharides and Polyhydroxyalkanoates by Archaea, Archaea, 2011, 11, 1-13.
221. B. Zisu, N.P. Shah, Effects of pH, Temperature, Supplementation with Whey Protein Concentrate, and Adjunct Cultures on the Production of Exopolysaccharides by Streptococcus thermophilus 1275, Journal of Dairy Science, 2003, 86 (11), 3405-3415.
222. P.-T. Nguyen, T.-T. Nguyen, D.-C. Bui, P.-T. Hong, Q.-K. Hoang, H.-T. Nguyen, Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications, AIMS Microbiology, 2020, 6 (4), 451-469.
223. K. Sasikumar, D. Vaikkath, L. Devendra, K.M. Nampoothiri, An exopolysaccharide (EPS) from a Lactobacillus plantarum BR2 with potential benefits for making functional foods, Bioresource Technology, 2017, 241, 1152- 1166.
224. G. Péterszegi, I. Fodil-Bourahla, A.M. Robert, L. Robert, Pharmacological properties of fucose. Applications in age-related modifications of connective tissues, Biomedicine & Pharmacotherapy, 2003, 57 (5-6), 240-245.
225. V. Ravelojaona, A.M. Robert, L. Robert, Expression of senescence-associated β- galactosidase (SA-β-Gal) by human skin fibroblasts, effect of advanced glycation end-products and fucose or rhamnose-rich polysaccharides, Archives of Gerontology and Geriatrics, 2008, 48, 151-154.
226. Q. Jia, J.F. Nash. Pathology of Aging Skin. In Textbook of Aging Skin, Farage, M.A., Miller, K.W., Maibach, H.I., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2017, 363-385.
227. E. Bahat-Samet, S. Castro-Sowinski, Y. Okon, Arabinose content of extracellular polysaccharide plays a role in cell aggregation of Azospirillum brasilense, FEMS Microbiology Letters, 2004, 237, 195-203.
228. V.D. Sandhya, A. Skz, The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation, Microbiology, 2015, 84, 512-519.
229. N. Guan, L. Liu, Microbial response to acid stress: mechanisms and applications, Applied Microbiology and Biotechnology, 2020, 104 (1), 51-65.
230. C. Le Marrec. Responses of Lactic Acid Bacteria to Osmotic Stress. 2011, 67-90.
231. P.-T. Nguyen, T.-T. Nguyen, T.-N.-T. Vo, T.-T.-X. Nguyen, Q.-K. Hoang, N. Huu Thanh, Response of Lactobacillus plantarum VAL6 to challenges of pH and sodium chloride stresses, Scientific Reports, 2021, 11, 1-17.
232. A.A. Mendonca, P.K.N. da Silva, T.L.S. Calazans, R.B. de Souza, W. de Barros Pita, C. Elsztein, M.A. de Morais Junior, Lactobacillus vini: mechanistic response to stress by medium acidification, Microbiology, 2019, 165 (1), 26-36.
233. Y. Li, Y. Zhou, Y. Ma, X. Li, Design and synthesis of novel cell wall inhibitors of Mycobacterium tuberculosis GlmM and GlmU, Carbohydrate Research, 2011, 346 (13), 1714-1720.
234. M. Li, Q. Wang, X. Song, J. Guo, J. Wu, R. Wu, iTRAQ-based proteomic analysis of responses of Lactobacillus plantarum FS5-5 to salt tolerance, Annals of Microbiology, 2019, 69 (4), 377-394.
235. A. Welman, I. Maddox, Fermentation performance of an exopolysaccharide- producing strain of Lactobacillus delbrueckii subsp. bulgaricus, Journal of Industrial Microbiology & Biotechnology, 2003, 30, 661-668.
236. W.E.S. Mariana Gomes Vidal Sampaio, Marcia Vanusa da, B.S.d.S. Silva, Ludhimilla S. Gomes Lins de Lima,, G.M.T. Calazans, Production and characterization of a thermostable EPS produced by a new strain of Lactobacillus fermentum in medium containing sugarcane molasses, Journal of Engineering Research and Application, 2020, 10 (3), 1-10.
237. E. Zannini, D. Waters, A. Coffey, E. Arendt, Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides, Applied Microbiology and Biotechnology, 2016, 100, 1121-1135.
238. T.H.N. Vu, N.T. Quach, N.A. Nguyen, H.T. Nguyen, C.C. Ngo, T.D. Nguyen, P.-H. Ho, H. Hoang, H.H. Chu, Q.-T. Phi, Genome Mining Associated with Analysis of Structure, Antioxidant Activity Reveals the Potential Production of Levan-Rich Exopolysaccharides by Food-Derived Bacillus velezensis VTX20, Applied Sciences, 2021, 11 (15), 7055-7066.
239. A. Bertsch, D. Roy, G. LaPointe, Enhanced Exopolysaccharide Production by Lactobacillus rhamnosus in Co-Culture with Saccharomyces cerevisiae, Applied Sciences, 2019, 9 (19), 4026-4041.
240. U. Tukenmez, B. Aktas, B. Aslim, S. Yavuz, The relationship between the structural characteristics of lactobacilli-EPS and its ability to induce apoptosis in colon cancer cells in vitro, Scientific Reports, 2019, 9 (1), 8268-8279.
241. P. Sanlibaba, G. Çakmak, Exopolysaccharides Production by Lactic Acid Bacteria, Applied Microbiology, 2016, 2, 1-5.
242. A.S. Kumar, K. Mody, B. Jha, Bacterial exopolysaccharides--a perception, Journal of Basic Microbiology, 2007, 47 (2), 103-117.
243. Z. Liu, Z. Zhang, L. Qiu, F. Zhang, X. Xu, H. Wei, X. Tao, Characterization and bioactivities of the exopolysaccharide from a probiotic strain of Lactobacillus plantarum WLPL04, Journal of Dairy Science, 2017, 100 (9), 6895-6905.
244. B.A. Rasulov, J. Dai, M.A. Pattaeva, L. Yong-Hong, A. Yili, H.A. Aisa, D. Qiu,
W.J. Li, Gene expression abundance dictated exopolysaccharide modification in
Rhizobium radiobacter SZ4S7S14 as the cell's response to salt stress, International Journal of Biological Macromolecules, 2020, 164, 4339-4347.
245. R. Tollerson, 2nd, M. Ibba, Translational regulation of environmental adaptation in bacteria, Journal of Biological Chemistry, 2020, 295 (30), 10434-10445.
246. J. Zhang, C.L. Poh, Regulating exopolysaccharide gene wcaF allows control of Escherichia coli biofilm formation, Scientific Reports, 2018, 8 (1), 13127-31135.
247. M. Guchte, P. Serror, C. Chervaux, T. Smokvina, S. Ehrlich, E. Maguin, Stress response in lactic acid bacteria, Antonie van Leeuwenhoek, 2002, 82, 187-216.
248. P. Teixeira, H. Castro, R. Kirby, Evidence of membrane lipid oxidation of spray- dried Lactobacillus bulgaricus during storage, Letters in Applied Microbiology, 1996, 22 (1), 34-38.
249. A. Monteagudo-Mera, R.A. Rastall, G.R. Gibson, D. Charalampopoulos, A. Chatzifragkou, Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health, Applied Microbiology and Biotechnology, 2019, 103 (16), 6463-6472.
250. F.M. Carvalho, R. Teixeira-Santos, F.J.M. Mergulhao, L.C. Gomes, Effect of Lactobacillus plantarum Biofilms on the Adhesion of Escherichia coli to Urinary Tract Devices, Antibiotics, 2021, 10 (8), 966-103.
251. L. Karygianni, Z. Ren, H. Koo, T. Thurnheer, Biofilm Matrixome: Extracellular Components in Structured Microbial Communities, Trends in Microbiology, 2020, 28 (8), 668-681.
PHỤ LỤC
Phụ lục 1: Phương trình đường chuẩn Trolox
y = -0,0063x + 0,6541
R² = 0,9616
0,7
0,6
0,5
OD
0,4
0,3
0,2
0,1
0
0 20 40 60 80 100 120
Nồng độ Trolox (μmol/mL)
Phụ lục 2: Phương trình đường chuẩn protein
0.9
0.8
0.7
OD (595 nm)
0.6
0.5
0.4
0.3
0.2
0.1
0
y = 0.0026x + 0.0174 R2 = 0.9919
0 50 100 150 200 250 300 350
Nồng độ BSA (mg/ml)
Phụ lục 3: Xử lý thống kê
1. Phân tích Duncan khả năng sản xuất EPS của các chủng LAB phân lập được
Bảng 1.1. Phân tích Duncan năng suất EPS của các chủng LAB phân lập được
Count | Mean | Homogeneous Groups | |
CK1 | 3 | 2.36667 | X |
CK7 | 3 | 2.43667 | X |
DC2 | 3 | 2.58333 | XX |
CC2 | 3 | 2.72333 | XX |
N1 | 3 | 2.87333 | X |
L3 | 3 | 3.11 | X |
RM | 3 | 3.35667 | X |
L5 | 3 | 3.47 | X |
CC1 | 3 | 3.51667 | XX |
L2 | 3 | 3.72333 | XX |
CK5 | 3 | 3.81667 | X |
L4 | 3 | 4.17667 | X |
CK6 | 3 | 4.33667 | XX |
CK4 | 3 | 4.39333 | XX |
DC1 | 3 | 4.57 | X |
RM1 | 3 | 4.98667 | X |
CK3 | 3 | 5.14667 | X |
L1 | 3 | 5.44 | X |
L6 | 3 | 5.72333 | X |
Có thể bạn quan tâm!
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 15
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 16
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 17
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 19
- Nghiên cứu các điều kiện stress môi trường đến khả năng tổng hợp exopolysaccharides của vi khuẩn Lactobacillus plantarum - 20
Xem toàn bộ 169 trang tài liệu này.
2. Phân tích Duncan ảnh hưởng của stress môi trường lên sản xuất EPS ở L. plantarum VAL6
2.1. Ảnh hưởng của stress nhiệt
Bảng 2.1.1. Ảnh hưởng của nhiệt độ gây stress lên sản xuất EPS
Count | LS Mean | LS Sigma | Homogeneous Groups | |
Không gây stress | 15 | 7.97099 | 0.0472878 | X |
47 | 15 | 12.0996 | 0.0472878 | X |
42 | 15 | 12.153 | 0.0472878 | X |
Bảng 2.1.2. Ảnh hưởng của thời gian gây stress nhiệt lên sản xuất EPS
Count | LS Mean | LS Sigma | Homogeneous Groups | |
0 | 9 | 8.10048 | 0.0610483 | X |
7 | 9 | 11.1584 | 0.0610483 | X |
1 | 9 | 11.3731 | 0.0610483 | X |
5 | 9 | 11.4643 | 0.0610483 | XX |
3 | 9 | 11.6098 | 0.0610483 | X |
Bảng 2.1.3. Ảnh hưởng của nhiệt độ gây stress lên mật số L. plantarum VAL6
Count | LS Mean | LS Sigma | Homogeneous Groups | |
47 | 15 | 8.87487 | 0.0157902 | X |
42 | 15 | 9.06512 | 0.0157902 | X |
Không gây stress | 15 | 9.0959 | 0.0157902 | X |
Bảng 2.1.4. Ảnh hưởng của thời gian gây stress nhiệt lên mật số L. plantarum
VAL6
Count | LS Mean | LS Sigma | Homogeneous Groups | |
7 | 9 | 8.79718 | 0.0203851 | X |
5 | 9 | 8.97722 | 0.0203851 | X |
3 | 9 | 9.05549 | 0.0203851 | X |
1 | 9 | 9.07702 | 0.0203851 | X |
0 | 9 | 9.15291 | 0.0203851 | X |