Đặc Điểm Hình Thái Của Các Dòng B (Vụ Đông Xuân 2017-2018 Tại Gia Lâm – Hà Nội)

Accumulation of Fluorine by Plants, Journal of the Air Pollution Control Association. 16(8): 412-417.

66. Kabir H.M., Ahmad N.K.M., Yesmin F. & Subramaniam S. (2014). In vitro propagation of Gladiolus dalenii from the callus through the culture of corm slices. Journal of Phytology. 6: 40-45.

67. Kanika M. & Krishan P. (2014). Genetic divergence and relationship analysis among twenty two populations Of gladiolus Cultivars By Morphological And Rapd-Pcr Tool. International Journal of Education and Science Research Review. 1(6).

68. Kanika M. & Krishan P. (2015). The genetic divergence among 22 gladiolus genotypes using D analysis. African Journal of Basic & Applied Sciences. 7(3): 153-159.

69. Kaur S. & Dhatt K.K. (2019). Response of pollen viability in gladiolus (Gladiolus grandiflorus L.) to storage method and period. International Journal of Current Microbiology and Applied Sciences. 8(2): 1625-1631.

70. Kewscience (2017). Search for gladiolus. Royal Botanic Gardens, Kew. Retrieved from https://wcsp.science.kew.org/qsearch.do on August 21, 2021.

71. Klumpp A., Modesto I.F., Domingos M. & Klumpp G. (1997). Susceptibility of various gladiolus cultivars to fluoride pollution and their suitability for bioindication. Pesq Agro Brasi. 32: 239-247.

72. Kumar A., Kumar A. & Kumar A. (2019). Genetic variability, heritability, genetic advance and genetic divergence for yield and its contributing traits in gladiolus (Gladiolus grandiflorus L.). Int.J.Curr.Microbiol.App.Sci. 8(01): 689-701.

73. Kumar A., Kumar A., Sharma V., Mishra A., Singh S. & Kumar P.(2018). In vitro regeneration of gladiolus (Gladiolus hybrida L.): Optimization of growth media and assessment of genetic fidelity. Int.J.Curr.Microbiol.App.Sci. 7(10): 2900-2909.

74. Kumar J., Kumar R. & Pal K. (2011). Variability and character association in gladiolus (Gladiolus Gradiflorus L.). Agri Sci Digest. 31(4): 280-284.

75. Kumari K., Kumar S. & Mishra P. (2019). Floral characters of gladiolus as influenced by Gamma irradiation. Int.J.Curr.Microbiol.App.Sci. 8(1): 1077-1089.

76. Kumari P., Rao T.M., Kumar R. & Dhananjaya M.V. (2016). Seed setting behaviour among resistant and susceptible genotypes of gladiolus (Gladiolus hybridus Hort.) for Fusarium wilt disease. The Bioscan. 11(1): 491-494.

77. Liu F., Guo Q.S., Shi H.Z., Wang T. & Zhu Z.B. (2013). Genetic diversity and phylogenetic relationships among and within populations of Whitmania pigra and Hirudo nipponica based on ISSR and SRAP markers. Biochemical Systematics and Ecology. 51: 215-223.

78. Malviya R.K., Tripathi M.K., Vidhyashankar M., Patel R.P. & Ahuja (2018). Effect of different phytohormones on plant regeneration of gladiolus (Gladiolus hybridus Hort.) from cultured cormel. Asian Jr. of Microbiol. Biotech. Env. Sc. 19(2): 155-165.

79. Memon N., Jasakni J.M., Qasim M. & Sharif N. (2014). Cormel formation in gladiolus through tissue culture. Pak. J. Agri. Sci. 51(2): 475-482.

80. Memon N.U.N., Wahocho N. A., Miano T. F. & Leghari M.H. (2016). Propagation of gladiolus corms and cormels: A review. African Journal of Biotechnology. 15(32): 1699-1710.

81. Mesquita G.L., Machado E.C., Machado R., Cantarella H. & Mattos D. (2013). Fluoride exposure compromises gas exchange of plants. American Journal of Plant Sciences. 4: 16-20.

82. Mesquita G.L., Tanaka F.A.O., Cantarella H. & Mattos D. J. (2011). Atmospheric absorption of fluoride by cultivated species. Leafstructural changes and plant growth. Water Air Soil Pollut. 219: 143-156.

83. Methela N.J. & Islam M.S (2021). Corm and Cormel Production Improvement of gladiolus by spacing and size. Tropical Agricultural Research. 32(4): 445-452.

84. Mishra P., Singh A. K. & Singh O. P. (2014). Genetic variability, heritability, genetic advance, correlation coefficient and path analysis in gladiolus. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 7(7): 23-26.

85. Mohammad H. A. & Mohammad S. B. (2019). Introducing superior cultivars of gladiolus by important quality and quantity Indexes. Journal of Ornamental Plants. 9(1): 33-40.

86. Mohammad H. A. (2020). Evaluation yield and genetically factors in different cultivars of gladiolus. Ornamental Horticulture. 26(1): 8-17.

87. Mohammad H. A., Behzad E. & Mohammad A. K. (2020). Evaluation of Genetic Parameters and cormlet yield in gladiolus offspring. Journal of Ornamental Plants. 10(1): 37-47.

88. Moustafa S. M., Agina E.A., Ghatas Y.A.A. & El-Gazzar Y.A.M (2018). Effect of Gamma rays, Microwave and Colchicine on some morphological and cytological characteristics of Gladiolus grandiflorus c v. White Prosperity. Middle East Journal of Agriculture Research. 7(4): 1827-1839.

89. Naresh S., Rao A. V., Baskhar D., Rao M.P. & Krishna K.U. (2015). Genetic variability, heritability and genetic advance in gladiolus hybrids. Plant Archives. 15(1): 377-381.

90. National Horticulture Board (NHB) (2016). Indian production of gladiolus 2015- 2016. Retrieved from https://agriexchange.apeda.gov.in/India%20Production/ India_Productions.aspx?hscode=1031 on August 21, 2021.

91. Neha D. & Dhatt K.K. (2018). Induction of mutation for vegetative variability in gladiolus variety Sylvia through gamma rays. Journal of Hill Agriculture. 9(1): 88-93.

92. Nhut D.T., Jaime A., Silva T.D., Huyen P.X. & Paek K.Y. (2004). The improtance of explant source on regeneration and micropropagation of gladiolus by liquid shake culture. Scientia Horticulturae. 102: 407-414.

93. Niraj S., Ashish K. P., Roy R.K., Tewari S.K., Sushma T. & Rana T.S. (2016). Assessment of genetic variation and population structure in Indian gladiolus cultivars inferred from molecular markers. An International Journal of Cytology and Allied Topics. DOI 10.1007/s13237-016-0181-41.

94. Niraj S., Ashish K. P., Roy R.K., Tewari S.K., Sushma T. & Rana T.S (2017). Characterization of gladiolus germplasm using morphological, physiological, and molecular markers. Biochem Genet https://doi.org/10.1007/s10528-017-9835-4.

95. North American Gladiolus Council (NAGC) (2012). Grading standards for cut flowers in the world market requirements. Retrieved from http://ecoursesonline

.iasri.res.in/mod/page/view.php?id=80253 on August 21, 2021.

96. OEC (2021). Search for cut flowers. Retrieved from https://oec.world/en/profile/hs92/cut-flowers on August 21, 2021.

97. Padhi M., Sisodia A., Pal S., Kapri M. & Singh A.K. (2018). Growing media, GA3 and thiourea stimulates growth and rooting in gladiolus cormels cv. Tiger Flame. Journal of Pharmacognosy and Phytochemistry. 7(3): 1919-1922.

98. Pal A. & Singh R. (2012). Correlation and path coefficient analysis in gladiolus. Ann Hort. 5(1): 103-07.

99. Panse V.G. (1957). Genetics of quantitative characters in relation to plant breeding. Indian Journal of Genetics and Plant Breeding. 28: 225-229.

100. Patil S., Chawla S.L. & Chaudhary P. (2017). Induction of mutation through mutagens in gladiolus (Gladiolus hybridus) CV. American beauty. International Journal of Chemical Studies. 5(5): 2305-2308.

101. Patra S.K. & Mohanty C.R. (2015). Path coefficient analysis in gladiolus. Journal of Agriculture and Veterinary Science. 8(2): 28-32.

102. Pattanaik S., Paul A. & Lenka P.C. (2015). Genotypic and phenotypic variability and correlation studies in gladiolus. Journal Crop and Weed. 11(1): 113-119.

103. Poonam K., Manjunatha R.T., Anuradha S. & Adarsh M. (2015). Optimization of PCR parameters for molecular characterization of gladiolus genotypes using ISSR markers. Indian Journal of applied research. 5(4).

104. Pragya, Bhat K. V., Misra R. L. & Ranjan J. K. (2010a). Analysis of diversity and relationship among gladiolus cultivars using morphological and RAPD markers. Indian Journal of Agricultural Sciences. 80(9): 766-772.

105. Pragya, Bhat K. V., Misra R. L., Singh S. K. & Ranjan J. K. (2010b). Genetic relationship of gladiolus cultivars inferred from fluorescence based AFLP markers. Sci Hort. 123: 562-67.

106. Priyakumari I. & Sheela V.L. (2005) Micropropagation of gladiolus cv. „Peach Blossom‟ through enhanced release of axillary buds. Journal of Tropical Agriculture. 43(1-2): 47-50.

107. Rana M. K. & Sharma S. K. (2012). Biotechnological tools for efficient management and enhancing utilization of plant genetic resources (PG). In: Atri N S, Gupta R C, Sago M I S and Singhal V K (ed) Biodiversity Evaluation- Botanical Perspectives. 3-19.

108. Randhawa G.S. & Mukhopadhyay A. (2012). Floriculture in India. Allied Publishers Pvt Ltd. A-104 Mayapuri, Phase 11, New Delhi. 379-385.

109. Rashid M.H.A. (2018). Influence of size and plant growth regulators on corm and cormel production of gladiolus (Gladiolus grandiflorus L.). Progressive Agriculture. 29(2): 91-98.

110. Rashmi R., Chandrashekar S.Y., Arulmani N. & Geeta S.V. (2016). Genetic divergence studies in gladiolus genotypes (Gladiolus hybridus L.). Research in Environment and Life Sciences. 9(3): 274-276.

111. Reinhard K.R. (2003). Biomonitoring fluoride air pollution with gladiolus. Biological monitoring and assessment D-70771 echterdingen.

112. Ross C.W., Herman H. W., Gene W. M. & Rex L. H. (1968). Respiratory pathway, flower color, and leaf area of gladiolus as factors in the resistance to Fluoride Injury. Botanical Gazette. 129(1): 49-52.

113. Safeena S.A. & Thangam M. (2019) Field performance of gladiolus cultivars for growth, yield and quality cut flower production under Humid Agro climatic conditions of Goa. International Journal of Agriculture Sciences. 11(3): 7797-7800.

114. Sahu S., Nath M.R. & Jena L. (2020). Effect of split application of phosphorus on corm and cormel prodution of gladiolus (Gladiolus grandiflorus L.) “Candyman” under Bhubaneswar condition. Journal of Pharmacognosy and Phytochemistry. 9(5): 1053-1056.

115. Sajjad Y., Jaskani M.J., Ashraf M.Y., Qasim M. & Ahmad R. (2014). Response of morphological and physiological growth attributes to foliar application of plant growth regulators in gladiolus 'white prosperity. Pak. J. Agri. Sci. 51(1): 123-129.

116. Schoch C.L. (2020). NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford). 2020: baaa062. PubMed: 32761142 PMC: PMC7408187.

117. Shukla A., l Kashyap S., Ramteke V., Sinha L. & Netam M. (2018). Effect of gamma rays on flowering and vase life of gladiolus (Gladiolus grandiflorus L.). Journal of Pharmacognosy and Phytochemistry. 7(6): 558-561.

118. Singh A.K. & Kumar A. (2013). Studies of gamma irradiation on morphological characters in gladiolus. The asian Journal of horticulture. 8(1): 299-303.

119. Singh P., Jyoti B. & Ahmad T. (2017). Gladiolus - queen of bulbous flowers. Rashtriya Krishi. 12(1): 67-69.

120. Steinitz B., Cohen A., Goldberg Z. & Kochba M. (1991). Precocious gladiolus corm formation in liquid shake culture. Plant Cell Tissue Organ Cult. 26: 63-70.

121. Szczepaniak M., Kamiński R., Kuta E., Aneta S., Heise W.& Cieślak E. (2016). Natural hybridization between Gladiolus palustris and G.imbricatus inferred from morphological, molecular and reproductive evidence. Preslia. 88(1): 137-161.

122. Takatsu Y., Kasumi M., Manabe T., Hayashi M., Inoue E. Marubashi W. & Niwa

M. (2001). Temperature Effects on interspecific hybridization between Gladiolus grandiflora and G. Tristis. HortScience. 36(2): 341-343.

123. Tiwari A., Singh A.K. & Pal S. (2018). Effect of gamma irradiation on growth and floral characters of gladiolus varieties. International Journal of Chemical Studies. 6(6): 1277-1282.

124. Tomiozzo R., Gizelli M.P., Nereu A.S., Osmari U. L., Becker C.C., Schwab N.T., Muttoni M. & Cleber M. A. (2018). Cycle duration and quality of gladiolus floral stems in three locations of Southern Brazil. Ornam. Hortic. 24(4).

125. Toone G. (2005). Debates on the nativity of wild gladiolus, BSBI Recorder. 9: 17-19.

126. Tripathi M. K., Malviya R. K., Vidhyashankar M. & Patel R. P. (2017). Effect of plant growth regulators on in vitro morphogenesis in gladiolus (Gladiolus hybridus Hort.) from cultured corm slice. International Journal of Agricultural Technology. 13(4): 583-599.

127. Ullad K., Shamsi S.R.A., Ahmad S.S., Ahmad M.N., Khan S., Urooj R., Iqbal M.S., Zia A. & Khan N.A. (2016). Biomonitoring of fluoride pollution with gladiolus in the vicinity of a brick kiln field in Lahore, Pakistan. Research report Fluoride. 49(3 Pt 1): 245-252.

128. USAID (2017). U.S end market analysis for Kenyan cut flower. Retrieved from https://agoa.info/images/documents/15653/cutflowersendmarketreport.pdf on August 21, 2021.

129. Valdez R. Q., Sanchezpal J. R., Castaneda A., Mejorada E. & Johansennaime R. (2020). Diversidad de trips (Insecta: Thysanoptera: Thripidae) asociados al cultivo de gladiolo en México. Revista Colombiana de Entomología. 46(1): e8607. https://doi. org/10.25100/socolen. v46i1.8607.

130. Wambani H.N., Nyambati E.M., Makete N.N. & Masinde A.A. (2009). Evaluation of gladiolus cut – flower cultivars in northwestern Kenya. ACSS conference Cape town 2009.

131. Wang J., Guo Y., Che D., Liu S. & Yang C. (2008). ISSR analysis of 26 general species in Gladiolus hybridus Hort. Journal of Northeast Agricultural University. 15(4): 6-10.

132. Woltz S.S & Marousky F.J. (1975). Fluoride leaf scorch of lily and gladiolus: soil acidity, superphosphate and diagnostic techniques. Florida state horticultural society. 609-612.

133. Woltz S.S., Magie R.O. & Geraldson C.M. (1953). Studies on leaf scorch of gladiolus. Florida state horticultural society. 306-309.

134. XiaoPeng F., Guo G. N., Li P. G. & Man Z. B. (2008). Genetic diversity of dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Sc Hort. 117: 263-70.

135. Zahor A.R. (2015). Analysis of genetic diversity among gladiolus genotypes. Doctor thesis Punjab agricultural university, Ludhiana-141 004.

136. Zhang X., Liao L., Wang Z., Bai C. & Liu J. (2016). Analysis of genetic diversity in Chrysopogon aciculatus using Intersimple Sequence Repeat and Sequence- related Amplified Polymorphism markers. Hort science. 51(8): 972-979.

PHỤ LỤC


PHỤ LỤC 1. ĐẶC ĐIỂM CÁC DÕNG LAI LAY ƠN

142

Bảng 1: Đặc điểm hình thái của các dòng B (Vụ Đông Xuân 2017-2018 tại Gia Lâm – Hà Nội)



STT


Tên dòng


Dài ngồng(cm)


Số lá (lá)


TGST

(ngày)

Dài đoạn mang hoa

(cm)


Số hoa

/ngồng (hoa)


ĐK

hoa (cm)


Thế lá (cấp)


Cấp KĐL

(cấp)

Số củ con (củ)


Màu sắc chính


Màu sắc phụ


Màu sắc cánh môi

Màu sắc cánh thùy

dưới


Hình dạng hoa


Hình dạng cánh


Sắp xếp Hoa

1

B1

109,2

7

78

37,5

12

10,2

5

1

5

Đỏ tươi

Đồng M

Đồng M

Đồng M

Tròn

Trơn

Cùng

2

B2

148,5

7

78

66,7

17

9,7

3

1

5

Đỏ cam

Đồng M

Đồng M

Đồng M

Sao

Gợn

Khác

3

B3

136,3

8

81

57,4

17

11,1

1

1

34

Đỏ cờ

Đồng M

Đồng M

Đồng M

Sao

Trơn

Khác

4

B4

129,5

7

78

41,6

10

9,4

1

1

6

Hồng

cam

Trắng

Đồng M

Đồng M

Tròn

Gợn

Khác

5

B5

139,2

8

82

56,2

17

11,3

3

1

20

Đỏ cờ

Đồng M

Đồng M

Đồng M

Sao

Trơn

Khác

6

B6

134,1

7

72

65,2

14

12,5

1

1

25

Đỏ cờ

Đồng M

Đồng M

Đồng M

Sao

Gợn

Khác

7

B7

119,5

6

87

62,5

17

12,3

1

3

4

Đỏ cam

Đồng M

Đồng M

Đồng M

Sao

Gợn

Khác

8

B8

121,2

7

78

59,2

15

9,3

1

3

20

Hồng

Cam

Vàng

Vàng

cam

Đồng M

T.giác

Trơn

Khác

9

B9

106,2

7

76

33,5

13

10,3

1

1

23

Đỏ tươi

Đồng M

Đồng M

Đồng M

Tròn

Trơn

Cùng

Mean

127,1

7,1

78,9

53,3

14,7

10,7

1,7

1,4

15,8








SEm ±

4,6

0,2

1,4

4,2

0,9

0,4

0,3

0,3

3,7








Có thể bạn quan tâm!

Xem toàn bộ 195 trang tài liệu này.

Nghiên cứu chọn tạo giống hoa lay ơn Gladiolus sp. chất lượng cao - 20

Xem tất cả 195 trang.

Ngày đăng: 23/02/2023
Trang chủ Tài liệu miễn phí