Nghiên cứu chế tạo và tính nhạy khí của cấu trúc dị thể giữa dây nano SnO2 và một số oxit kim loại bán dẫn - 17

nanofibers by optimizing process conditions and loading with reduced graphene oxide,” J. Alloys Compd., vol. 826, 2020, doi: 10.1016/j.jallcom.2020.154169.

[102] Y. Zhao, C. Tao, G. Xiao, and H. Su, “Controlled synthesis and wastewater treatment of Ag2O/TiO2 modified chitosan-based photocatalytic film,” RSC Adv., vol. 7, no. 18, 2017, doi: 10.1039/c6ra27295a.

[103] F. Shao et al., “Heterostructured p-CuO (nanoparticle)/n-SnO2 (nanowire) devices for selective H2S detection,” Sensors Actuators, B Chem., vol. 181, 2013, doi: 10.1016/j.snb.2013.01.067.

[104] I. S. Hwang et al., “Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO,” Sensors Actuators, B Chem., vol. 142, no. 1, 2009, doi: 10.1016/j.snb.2009.07.052.

[105] S. W. Choi, A. Katoch, J. Zhang, and S. S. Kim, “Electrospun nanofibers of CuO-SnO2 nanocomposite as semiconductor gas sensors for H2S detection,” Sensors Actuators, B Chem., vol. 176, 2013, doi: 10.1016/j.snb.2012.09.035.

[106] K.-I. Choi, H.-J. Kim, Y. C. Kang, and J.-H. Lee, “Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis,” Sensors Actuators B Chem., vol. 194, Apr. 2014, doi: 10.1016/j.snb.2013.12.111.

[107] J. Gong, Q. Chen, M. R. Lian, N. C. Liu, R. G. Stevenson, and F. Adami, “Micromachined nanocrystalline silver doped SnO 2 H 2 S sensor,” Sensors and Actuators, B: Chemical, vol. 114, no. 1. pp. 32–39, 2006, doi: 10.1016/j.snb.2005.04.035.

[108] T. M. Ngoc et al., “Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing,” Anal. Chim. Acta, vol. 1069, pp. 108–116, 2019, doi: 10.1016/j.aca.2019.04.020.

[109] J. W. Yoon, Y. J. Hong, Y. C. Kang, and J. H. Lee, “High performance chemiresistive H2S sensors using Ag-loaded SnO2 yolk-shell nanostructures,” RSC Adv., vol. 4, no. 31, pp. 16067–16074, 2014, doi: 10.1039/c4ra01364f.

[110] T. Seiyama, A. Kato, K. Fujiishi, and M. Nagatani, “A New Detector for

Có thể bạn quan tâm!

Xem toàn bộ 143 trang tài liệu này.

Gaseous Components Using Semiconductive Thin Films,” Anal. Chem., vol. 34, no. 11, 1962, doi: 10.1021/ac60191a001.

[111] S. Matsushima, Y. Teraoka, N. Miura, and N. Yamazoe, “Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors,” Jpn. J. Appl. Phys., vol. 27, no. 10 R, 1988, doi: 10.1143/JJAP.27.1798.

Nghiên cứu chế tạo và tính nhạy khí của cấu trúc dị thể giữa dây nano SnO2 và một số oxit kim loại bán dẫn - 17

[112] N. Yamazoe, Y. Kurokawa, and T. Seiyama, “Effects of additives on semiconductor gas sensors,” Sensors and Actuators, vol. 4, no. C, 1983, doi: 10.1016/0250-6874(83)85034-3.

[113] X. Chen et al., “Templating synthesis of SnO2 nanotubes loaded with Ag 2O nanoparticles and their enhanced gas sensing properties,” Adv. Funct. Mater., vol. 21, no. 11, 2011, doi: 10.1002/adfm.201002701.

[114] D. Sarkar, C. K. Ghosh, S. Mukherjee, and K. K. Chattopadhyay, “Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity,” ACS Appl. Mater. Interfaces, vol. 5, no. 2, 2013, doi: 10.1021/am302136y.

[115] H. W. Choi, S. Y. Kim, K. B. Kim, Y. H. Tak, and J. L. Lee, “Enhancement of hole injection using O2 plasma-treated Ag anode for top-emitting organic light- emitting diodes,” Appl. Phys. Lett., vol. 86, no. 1, 2005, doi: 10.1063/1.1846149.

[116] V. Van Quang, N. Van Dung, N. Sy Trong, N. Duc Hoa, N. Van Duy, and N. Van Hieu, “Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions,” Appl. Phys. Lett., vol. 105, no. 1, 2014, doi: 10.1063/1.4887486.

[117] J. Zhang et al., “Impurity level evolution and majority carrier-type inversion of Ag 2S under extreme compression: Experimental and theoretical approaches,” Appl. Phys. Lett., vol. 103, no. 8, 2013, doi: 10.1063/1.4819160.

[118] J. Jang, K. Cho, S. H. Lee, and S. Kim, “Synthesis and electrical characteristics of Ag2S nanocrystals,” Mater. Lett., vol. 62, no. 8–9, 2008, doi: 10.1016/j.matlet.2007.08.080.

[119] L. M. Lyu and M. H. Huang, “Formation of Ag2S cages from polyhedral Ag2O nanocrystals and their electrochemical properties,” in Chemistry - An Asian

Journal, 2013, vol. 8, no. 8, doi: 10.1002/asia.201300066.

[120] I. S. Hwang et al., “Enhanced H2S sensing characteristics of SnO2 nanowires functionalized with CuO,” Sensors Actuators, B Chem., vol. 142, no. 1, pp. 105–110, 2009, doi: 10.1016/j.snb.2009.07.052.

[121] Y. Zhu, C. Cao, S. Tao, W. Chu, Z. Wu, and Y. Li, “Ultrathin nickel hydroxide and oxide nanosheets: Synthesis, characterizations and excellent supercapacitor performances,” Sci. Rep., vol. 4, pp. 1–7, 2014, doi: 10.1038/srep05787.

[122] J. Ma et al., “α-Fe2O3 nanochains: Ammonium acetate-based ionothermal synthesis and ultrasensitive sensors for low-ppm-level H 2S gas,” Nanoscale, vol. 5, no. 3, pp. 895–898, 2013, doi: 10.1039/c2nr33201a.

[123] H. J. Zhang, F. N. Meng, L. Z. Liu, and Y. J. Chen, “Convenient route for synthesis of alpha-Fe2O3 and sensors for H2S gas,” J. Alloys Compd., vol. 774, pp. 1181–1188, 2019, doi: 10.1016/j.jallcom.2018.09.384.

[124] H. J. Zhang, F. N. Meng, L. Z. Liu, Y. J. Chen, and P. J. Wang, “Highly sensitive H2S sensor based on solvothermally prepared spinel ZnFe2O4 nanoparticles,” Journal of Alloys and Compounds, vol. 764. 2018, doi: 10.1016/j.jallcom.2018.06.052.

[125] X. Gao, Y. Sun, C. Zhu, C. Li, Q. Ouyang, and Y. Chen, “Highly sensitive and selective H2S sensor based on porous ZnFe2O4 nanosheets,” Sensors Actuators, B Chem., vol. 246, pp. 662–672, 2017, doi: 10.1016/j.snb.2017.02.100.

[126] K. Fan, J. Guo, L. Cha, Q. Chen, and J. Ma, “Atomic layer deposition of ZnO onto Fe2O3nanoplates for enhanced H2S sensing,” J. Alloys Compd., vol. 698, pp. 336–340, 2017, doi: 10.1016/j.jallcom.2016.12.203.

[127] Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sensors Actuators, B Chem., vol. 222, pp. 78–86, 2016, doi: 10.1016/j.snb.2015.08.058.

[128] V. Balouria et al., “Enhanced H2S sensing characteristics of Au modified Fe2O3 thin films,” Sensors Actuators, B Chem., vol. 219, pp. 125–132, 2015,

doi: 10.1016/j.snb.2015.04.113.

[129] A. Natkaeo, D. Phokharatkul, J. H. Hodak, A. Wisitsoraat, and S. K. Hodak, “Highly selective sub–10 ppm H2S gas sensors based on Ag-doped CaCu3Ti4O12 films,” Sensors Actuators, B Chem., vol. 260, pp. 571–580, 2018, doi: 10.1016/j.snb.2017.12.134.

[130] A. Boontum, D. Phokharatkul, J. H. Hodak, A. Wisitsoraat, and S. K. Hodak, “H2S sensing characteristics of Ni-doped CaCu3Ti4O12 films synthesized by a sol-gel method,” Sensors Actuators, B Chem., vol. 260, pp. 877–887, 2018, doi: 10.1016/j.snb.2018.01.090.

[131] J. Hu et al., “An olive-shaped SnO2 nanocrystal-based low concentration H2S gas sensor with high sensitivity and selectivity,” Phys. Chem. Chem. Phys., vol. 17, no. 32, 2015, doi: 10.1039/C5CP02854J.

[132] R. Boughalmi, R. Rahmani, A. Boukhachem, B. Amrani, K. Driss-Khodja, and

M. Amlouk, “Metallic behavior of NiS thin film under the structural, optical, electrical and ab initio investigation frameworks,” Mater. Chem. Phys., vol. 163, pp. 99–106, 2015, doi: 10.1016/j.matchemphys.2015.07.019.

[133] X. Wang et al., “Highly crystalline, small sized, monodisperse α-NiS nanocrystal ink as an efficient counter electrode for dye-sensitized solar cells,” J. Mater. Chem. A, vol. 3, no. 31, pp. 15905–15912, 2015, doi: 10.1039/c5ta02946e.

[134] E. S. Hassan, A. A. Saeed, and A. K. Elttayef, “Doping and thickness variation influence on the structural and sensing properties of NiO film prepared by RF- magnetron sputtering,” J. Mater. Sci. Mater. Electron., vol. 27, no. 2, pp. 1270– 1277, 2016, doi: 10.1007/s10854-015-3885-3.

[135] D. Tsokkou, A. Othonos, and M. Zervos, “Carrier dynamics and conductivity of SnO 2 nanowires investigated by time-resolved terahertz spectroscopy,” Appl. Phys. Lett., vol. 100, no. 13, 2012, doi: 10.1063/1.3698097.

[136] S. S. Kim, H. G. Na, H. W. Kim, V. Kulish, and P. Wu, “Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application,” Sci. Rep., vol. 5, no. June, 2015, doi: 10.1038/srep10723.

[137] M. T. Greiner, M. G. Helander, Z. Bin Wang, W. M. Tang, and Z. H. Lu,

“Effects of processing conditions on the work function and energy-level alignment of NiO thin films,” J. Phys. Chem. C, vol. 114, no. 46, pp. 19777– 19781, 2010, doi: 10.1021/jp108281m.

[138] G. Zhang, X. Han, W. Bian, J. Zhan, and X. Ma, “Facile synthesis and high formaldehyde-sensing performance of NiO-SnO2 hybrid nanospheres,” RSC Adv., vol. 6, no. 5, pp. 3919–3926, 2016, doi: 10.1039/c5ra21063a.

[139] D. Xue et al., “Enhanced methane sensing properties of WO 3 nanosheets with dominant exposed (200) facet via loading of SnO 2 nanoparticles,” Nanomaterials, vol. 9, no. 3, 2019, doi: 10.3390/nano9030351.

[140] N. Barsan, M. Schweizer-Berberich, and W. Göpel, “Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: A status report,” Fresenius’ Journal of Analytical Chemistry, vol. 365, no. 4. pp. 287– 304, 1999, doi: 10.1007/s002160051490.

[141] S. Ahlers, G. Müller, and T. Doll, “A rate equation approach to the gas sensitivity of thin film metal oxide materials,” Sensors and Actuators, B: Chemical, vol. 107, no. 2. pp. 587–599, 2005, doi: 10.1016/j.snb.2004.11.020.

DANH MỤC CÔNG TRÌNH ĐÃ CÔNG BỐ CỦA LUẬN ÁN


1. Trần Thị Ngọc Hoa, Nguyễn Văn Duy, Đặng Thị Thanh Lê, Chử Mạnh Hưng, Nguyễn Văn Hiếu (2017), Tăng cường tính chất nhạy khí NO2 tại nhiệt độ phòng của dây nano cấu trúc SnO2-lòi/ZnO-vỏ, Hội nghị Vật lý chất rắn và Khoa học vật liệu toàn quốc lần thứ X - ĐH Bách khoa Hà Nội (quyển 1).

2. Tran Thi Ngoc Hoa, Nguyen Duc Hoa, Nguyen Van Duy, Chu Manh Hung, Dang Thi Thanh Le, Nguyen Van Toan, Nguyen Huy Phuong and Nguyen Van Hieu, (2019), Effective H2S sensor based on SnO2 nanowires decorated with NiO nanoparticles by electron beam evaporation", RSC Advances 9 (2019) 13887-13895;

***IF2019: 3.119***

3. Tran Thi Ngoc Hoa, Nguyen Van Duy, Chu Manh Hung, Nguyen Van Hieu, Ho Huu Hau, Nguyen Duc Hoa, (2020), Dip-coating decoration of Ag2O nanoparticles on SnO2 nanowires for high-performance H2S gas sensors", RSC Advances 10 (2020) 17713-17723; ***IF2019: 3.119***

4. Tran Thi Ngoc Hoa, Dang Thanh Le, Nguyen Van Toan, Nguyen Van Duy, Chu Manh Hung, Nguyen Van Hieu, Nguyen Duc Hoa, (2021), Highly selective H2S gas sensor based on WO3-coated SnO2 nanowires, Materials Today Communications 26 (2021) 102094; ***IF: 2.678***

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 12/07/2022