28. Hutchison JE Brown LO, Controlled Growth of Gold Nanoparticles during Ligand Exchange, J. Am. Chem. Soc., 121 (4), 882-883, (1999).
29. GM. Whitesides PE. Laibinis Self-assembled monolayers of nalkanethiolates on copper are barrier films that protect the metal against oxidation by air, J. Am. Chem. Soc., 114, 9022-9028, (1992).
30. J. Sagiv, Organized monolayers by adsorption: 1.Formation and structure of olephobic mixed monolayers on solid surfaces, J. Am. Chem. Soc., 102 (1), 92-98, (1980).
31. Michael E. Celestin., Application and Characterization of SelfAssembled Monolayers In Hybrid Electronic Systems, Graduate Theses and Dissertations. University of South Florida, (2013).
32. S.Ophir D.Mandler, Self-assembled monolayers (SAMs) for electrochemical sensing, J Solid State Electrochem, 15 1535-1558, (2011).
33. F. Schreiber, Structure and growth of self-assembling monolayers, Progress in Surface Science, 65 151-256, (2000).
34. Graham.D. Boeckl.M, Self-Assembled Monolayers: Advantages of Pure Alkanethiols, Material Matters, 1 1-5, (2006).
35. K. M. Robinson and W. E. O’Grady, X-ray surface diffraction studies of the restructuring and electrodeposition of Pb monolayers on Au(100) single crystals, Faraday Discuss., 95 (0), 55-64, (1993).
36. A. Ulman, Formation and structure of self-assembled monolayers, Chemical Reviews, 96 (4), 1533-1554, (1996).
37. JF. Smalley HD. Sikes , SP. Dudek , AR. Cook , MD. Newton , CED. Chidsey
Có thể bạn quan tâm!
- Kết Quả Phân Tích Hàm Lượng Hg (Ii) Trong Cùng Một Mẫu Trong Hai Ngày Liên Tiếp
- Đường Dpasv Và Đường Chuẩn Theo Chiều Cao Píc Trên Điện Cực Pet- Aet-Sam/ Aunp-Go Khi Nồng Độ Thủy Ngân Tăng Dần Từ 30 Ppt Đến 3500 Ppt.
- Ảnh Hưởng Của Thế Áp (A); Nồng Độ Kcl (B); Thời Gian Điện Phân (C); Và Thời Gian Khuấy (D) Đến Tín Hiệu Hg (Ii)
- Nghiên cứu biến tính điện cực than thuỷ tinh bằng vật liệu có cấu trúc nano ứng dụng để xác định thuỷ ngân trong môi trường nước - 17
Xem toàn bộ 138 trang tài liệu này.
,SW. Feldberg Rapid electron tunneling through oligophenylenevinylene bridges, Science, 291, 1519-1523, (2001).
38. J. Evall C. D. Bain, G. M. Whitesides, Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group and solvent, J. Am. Chem. Soc., 111 (18), 7155-7164, (1989).
39. D. Hobara; T. Kakiuchi, Domain structure of binary self-assembled monolayers composed of 3-mercapto-1-propanol and 1-tetradecanethiol on Au(111) prepared by coadsorption, Electrochem. Commun, 3, 154-157, (2001).
40. S.A. Jadhav, Self-assembled monolayers (SAMs) of carboxylic acids: an overview Cent, Eur, J. Chem, 9 (3), 369-378, (2011).
41. Rudolf Holze Michael Bron, Structural studies of self-assembled monolayers of 4-mercaptopyridine on gold electrodes with surface-enhanced Raman spectroscopy, Journal of Solid State Electrochemistry, 19 2673-2682, (2015).
42. Osamu ONODERA Masayoshi NAKAJIMA, Toshihiko MATSUURA, Takumi TAKAMURA, Yuhei SHIMOYAMA, Growth Process of Self- assembled Monolayer of Thiophene, Japanese Journal of Applied Physics 40 (12), 6945-6950, (2001).
43. E.; Steyskal Hengge, E.-M.; Bachler, R.; Dennig, A.; Nidetzky, B.; Würschum, R., Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry. , Beilstein J. Nanotechnol, 10 2275-2279, (2019).
44. Sushilkumar A. Jadhav., Self-assembled monolayers (SAMs) of carboxylic acids: An overview, Central European Journal of Chemistry, 9 (3), 369-378, (2011).
45. L.A. Estroff J.C. Love, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self- assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev, 105 1103-1169, (2005).
46. A. Ulman, Formation structure of self-assembled monolayers, Chem. Rev, 96, 1533-1554, (1996).
47. A. Ulman, An Introduction to Ultrathin Organic Films, (1991).
48. Cheunkar S Liao WS, Cao HH, Bednar HR, Andrews AM, Subtractive Patterning via Chemical Lift-Off Lithography, Weiss PS. Science. , 337 (6101), 1517-1521, ( 2012).
49. M. E. Vela and R. C. Salvarezza C. Vericat, Self-assembled monolayers of alkanethiols on Au(111): surface structures, defects and dynamics, Phys. Chem. Chem. Phys., 7 3258-3268, (2005).
50. R.Mutharasan K.Rijal, Method for Measuring the Self-Assembly of Alkanethiols on Gold at Femtomolar Concentrations, Langmuir, 23 6856- 6863, (2007).
51. a M. E. Vela C. Vericat, G. Corthey, E. Pensa,a E. Cort´es, M. H. Fonticelli,aF. Iba˜nez, G. E. Benitez,a P. Carro, R. C. Salvarezza, Self-assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry andsurface structures, RSC Adv., 4 27730, (2014).
52. Christopher E. D. Chidsey Nicholas Camillone III Department, Gang-yu Liu, Giacinta Scoles, Substrate dependence of the surface structure and chain packing of docosyl mercaptan self-assembled on the (111), (110), and (100) faces of single crystal gold, J. Chern. Phys., 98 (5), 4234-4245, (1993).
53. in Nanobiomaterials A. Hasan and L. M. Pandey, ed. R. Narayan, Self- assembled monolayers in biomaterials, Woodhead Publishing, 137-178, (2017).
54. A. Hadipour B. de Boer, R. Foekema, T. van Woudenbergh, M. M. Mandoc,
V. D. Mihailetchi and P. W. M. Blom, Organic Optoelectronics and Photonics, SPIE, Bellingham, WA, (2004).
55. Deepak Prashar, Self Assembled Monolayers -A Review, ChemTech, 4 (4), 258-265, (2012).
56. a M. E. Vela C. Vericat, a G. Corthey,†a E. Pensa,a E. Cort´es,‡a M. H. Fonticelli,aF. Iba˜nez,a G. E. Benitez,a P. Carro*b and R. C. Salvarezza, Self- assembled monolayers of thiolates on metals: a review article on sulfur-metal chemistry and surface structures, RSC Adv., 4, 27730, (2014).
57. S. Vollmer G. Loepp, G. Witte, C. Woll, Adsorption of Heptanethiol on Cu(110), Langmuir, 15 3767-3772, (1999).
58. V.; Zurcher Zoulalian, S.; Tosatti, S.; Textor, M.; Monge, S.; Robin, J. J., Self- Assembly of Poly(ethylene glycol)-Poly(alkyl phosphonate) Terpolymers on Titanium Oxide Surfaces: Synthesis, Interface Characterization, Investigation of Nonfouling Properties, and Long-Term Stabilit, Langmuir, 26 (1), 74-82, (2010).
59. B. O.; Ting Acton, G. G.; Shamberger, P. J.; Ohuchi, F. S.; Ma, H.; Jen, A. K. Y., Dielectric Surface-Controlled Low-Voltage Organic Transistors via n- Alkyl Phosphonic Acid Self-Assembled Monolayers on High-k Metal Oxide., ACS Appl. Mater. Interf., 2 (2), 511-520, (2010).
60. S.; Ravoo Onclin, B. J.; Reinhoudt, D. N., , Engineering Silicon Oxide Surfaces Using Self-Assembled Monolayers, Angew. Chem. Int. Ed., 44 6282
- 6304, (2005).
61. Zutphen Wöhrmann Print Services, The Netherlands, Self-assembled monolayers on metal oxides : applications in nanotechnology, (2010.).
62. F. Schreiber, Structure and growth of self-assembling monolayers, Prog. Surf. Sci., 65 151-256, (2000).
63. E. D. Pylant G. E. Poirier, The Self-Assembly Mechanism of Alkanethiols on Au(111), Science, 272 1145-1148, (1996).
64. Johanna Stettner, Self assembled monolayer formation of alkanethiols on gold: Growth from solution versus physical vapor deposition, Graz University of Technology, (2010).
65. M. Hegner A. Bietsch, H. P. Lang, C. Gerber Rapid functionalization of cantilever array sensors by inkjet printing, Nanotechnology, 15, 873-880, (2004).
66. R. J. Kaiser A. P. Blanchard, L. E. Hood, High-density oligonucleotide arrays,
Biosensors & Bioelectronics, 11 (6-7), 687-690, (1996).
67. Martin Hegner Alexander Bietsch, Hans Peter Lang, Christoph Gerber, Inkjet Deposition of Alkanethiolate Monolayers and DNA Oligonucleotides on Gold: Evaluation of Spot Uniformity by Wet Etching, Langmuir, 20 5119-5122, (2004).
68. Lorenz Walder Ina Rianasari, Malte Burchardt, Izabella Zawisza, Gunther Wittstock, Inkjet-Printed Thiol Self-Assembled Monolayer Structures on Gold: Quality Control and Microarray Electrode Fabrication, Langmuir, 24, 9110-9117, (2008).
69. S.-C. Chang T.-F. Guo, S. Pyo, Y. Yang, Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes, Langmuir, 18 (21), 8142- 8147, (2002).
70. C. C. Wu T. R. Hebner, D. Marcy, M. H. Lu, J. C. Sturm, Ink-jet printing of doped polymers for organic light emitting devices, Appl. Phys. Lett., 72 (5), 519-521, (1998).
71. Asaftei S. Möller M., Corr D., Ryan M., Walder L., Switchable electrochromic images based on a combined top-down bottom-up approach, Adv. Mater., 16 1558-1562, (2004).
72. Schubert US. De Gans BJ, Inkjet printing of polymer micro-arrays and libraries: instrumentation, requirements, and perspective, Macromol Rapid Commun, 24 659-666, (2003).
73. M. M.; Evans Mohebi, J. R., A drop-on-demand ink-jet printer for combinatorial libraries and functionally graded ceramics, J Comb. Chem., 4 267-274, (2002).
74. L. C. S.; Liu Chou, C.-C, Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection, Sens. Actuators, 110 204, (2005).
75. Xiao Li and Scott M. Husson, Two-Dimensional Molecular Imprinting Approach to Produce Optical Biosensor Recognition Elements, Langmuir, 22, 9658-9663, (2006).
76. Orawon Chailapakul and Richard M. Crooks, Interactions between Organized, Surface-Confined Monolayers and Liquid-Phase Probe Molecules. 4. Synthesis and Characterization of Nanoporous Molecular Assemblies: Mechanism of Probe Penetration, Langmuir, 11, 1329-1340, (1995).
77. A.-Y. Park J.-P. Hong, S. Lee, J. Kang, N. Shin, D. Y. Yoon, Appl, Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors, Phys. Lett, 92 14331, (2008).
78. N Kaur M Singh, E Comini., The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C, 8 3938-3955, (2020).
79. E. B. Troughton C. D. Bain, Y-T. Tao, J. Evall, G. M. Whitesides, R. G. Nuzzo, Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold J. Am. Chem. Soc., 111 (1), 321-335, (1989).
80. C.J. Durning W. Pan, N.J. Turro., Kinetic of alkanethiol adsorption on gold,
Langmuir, 12 4469-4473, (1996).
81. A.J. Bard K. Hu, In situ monitoring of kinetics of charged thiol adsorption on gold using an atomic force microscope, Langmuir, 14 4790-4797, (1998).
82. Y.-S. Shon; T.R. Lee, A Steady-State Kinetic Model Can Be Used to Describe the Growth of Self-Assembled Monolayers (SAMs) on Gold., J. Phys. Chem., 104 8182-8191, (2000).
83. S. Eu W. Paik, K. Lee, S. Chon, M. Kim, Electrochemical Reactions in Adsorption of Organosulfur Molecules on Gold and Silver: Potential Dependent Adsorption, Langmuir, 116 10198-10205, (2000).
84. T. B. Bright M. D. Porter, D. L. Allara, C. E. D. Chidsey, Spontaneously Organized Molecular Assemblies. 4. Structural Characterization of n-Alkyl Thiol Monolayers on Gold by Optical Ellipsometry, Infrared Spectroscopy, and Electrochemistry, J. Am. Chem. Soc., 109 ( ), 3559-3568, (1987).
85. G. M. Whitesides P. E. Laibinis, D. L. Allara, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold, J. Am. Chem. Soc., 113 7152-7167, (1991).
86. C. D. Bain E. B. Troughton, G. M. Whitesides, Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups, Langmuir 4 365-385, (1988).
87. Amro NA Yang G, Starkewolfe ZB, Liu G-Y. , Molecular-Level Approach To Inhibit Degradations of Alkanethiol Self-Assembled Monolayers in Aqueous Media Langmuir, 20 3995-4003, (2004).
88. Jonathan So Christie A. Canaria, James R. Maloney, C. J. Yu, Jeffrey O. Smith,b Michael L. Roukes, Scott E. Fraserb, Rusty Lansford, Formation and removal of alkylthiolate self-assembled monolayers on gold in aqueous solutions, Lab Chip, 6 289-295, (2006).
89. Daniel B Wolfe J. Christopher Love , Richard Haasch, Michael L Chabinyc, Kateri E Paul, George M Whitesides, Ralph G Nuzzo, Formation and Structure of Self-Assembled Monolayers of Alkanethiolates on Palladium, J Am Chem Soc, 125 (9), 2597-609, (2003).
90. H. A.; Bain Biebuyck, C. D.; Whitesides, G. M. , Comparison of Organic Monolayers on Polycrystalline Gold Spontaneously Assembled from Solutions Containing Dialkyl Disulfides or Alkanethiolsr, Langmuir, 10 (6), 1825- 1831, (1994).
91. CE. Chidsey, Free energy and temperature dependence of electron transfer at the metal-electrolyte interface, Science, 251 (4996), 919-922, (1991).
92. Roger H. Terrill, Troy A. Tanzer, Paul W. Bohn., Structural Evolution of Hexadecanethiol Monolayers on Gold during Assembly: Substrate and Concentration Dependence of Monolayer Structure and Crystallinity. , Langmuir, 14 (4), 845-854, (1998).
93. Whitesides G; Laibinis P., Wet Chemical Approaches to the Characterization of Organic Surfaces: Self- Assembled Monolayers, Wetting, and the Physical- Organic Chemistry of the Solid-Liquid Interface., Langmuir, 6 (1), 87-96, (1990).
94. A.-Y. Park J.-P. Hong, S. Lee, J. Kang, N. Shin and D. Y. Yoon, Appl, Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilylethynyl pentacene organic thin film transistors, Phys. Lett, 92 14331, (2008).
95. Phạm Ngọc Nguyên, Giáo trình Kỹ thuật phân tích vật lý, (2004).
96. Lê Văn Vũ, Giáo trình cấu trúc và phân tích cấu trúc vật liệu, (2004).
97. Yoshitaka Fukuda Yoshiharu Mukouyama, Hiroki Okada, Makoto Saito and Takashi Nishimura, Fabrication of Uniformly Sized Gold Nanoparticles on Glassy Carbon by Simple Electrochemical Method Yoshiharu Mukouyama, Journal of The Electrochemical Society, 166 (13), D669-D675, (2019).
98. Weiwei Li; Song Gao; Liqiong Wu; Shengqiang Qiu; Yufen Guo; Xiumei Geng; Mingliang Chen; Shutian Liao; Chao Zhu; Youpin Gong; Mingsheng Long; Jianbao Xu; Xiangfei Wei; Mengtao Sun; Liwei Liu, High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions, Nature, 3 2125, (2013).
99. C. Daniel Frisbie Eric W. Wollman, Mark S. Wrighton, Scanning Electron Microscopy for Imaging Photopatterned Self -Assembled Monolayers on Gold, Langmuir, 9 1617-1620, (1993).
100. Pham Thi Hai Yen Pham Khac Duy, Seulah Chun, Vu Thi Thu Ha, HoeilChung, Carbon fiber cloth–supported Au nanodendrites as a ruggedsurface-enhanced Raman scattering substrate and electrochemical sensingplatform, Sensors and Actuators B, 225 377-383, (2016).
101. Fang Fang Yuli Wei, a Wu Yan, Hao Guo, Xiuli Niua and Lijun Sunc,
Preparation of a Nitrite Electrochemical Sensor Based on Polyaniline/
Graphene Ferrocenecarboxylic Acid Composite Film Modified Glass Carbon Electrode and its Analytical Application, J. Braz. Chem. Soc., 26 (10), 2003- 2013., (2015).
102. D.R. Rotake, Darji, A. Singh, J., Thin-film based sensor for the selective detection of mercury (Hg2+) ions at the picomolar range, Sensor Review, 40 (4), 485-495, (2020).
103. Nian Bing Li Yun Wu, Hong Qun Luo, Electrochemical determination of Pb(II) at a gold electrode modified with a self-assembled monolayer of 2,5- dimercapto-1,3,4-thiadiazole, Microchimica Acta, 160 (1), 185-190, (2008).
104. H. B. de Aguiar T. M. Uehara, K. Bergamaski and P. B., Miranda Adsorption of Alkylthiol Self-Assembled Monolayers on Gold and the Effect of Substrate Roughness: A Comparative Study Using Scanning Tunneling Microscopy, Cyclic Voltammetry, Second-Harmonic Generation, and Sum-Frequency Generation, J. Phys. Chem. C, 118 20374−20382, (2014).
105. Hiang Kwee Lee1 Srikanth Pedireddy, Weng Weei Tjiu, In Yee Phang, Hui Ru Tan, Shu Quan Chua, Cedric Troadec, Xing Yi Ling, One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance, Nature Communications, 5 4947, (2014).
106. K. Fajerwerg T. Hezard, D. Evrard, et al., , Influence of the gold nanoparticles electrodeposition method on Hg(II) trace electrochemical detection, Electrochimica Acta, 73 15-22, (2012).
107. Grosana C. Vulcu A., Muresanb L. M., Pruneanua S., Olenic L., Modified gold electrodes based on thiocytosine/guanine-gold nanoparticles for uric and ascorbic acid determination, Electrochimica Acta, 88 839- 846, (2013).
108. Neretia S. Huang X., El-Sayed M. A., Gold nanorods: From synthesis and properties to biological and biomedical applications, Advanced Materials, 21 4880-4910, (2009).
109. J. C. Ma, W. D. Zhang, Gold nanoparticle-coated multiwall carbon nanotube- modified electrode for electrochemical determination of methyl parathion, Microchimica Acta, 175 (3), 309-314, (2011).
110. M. Zhai L. Huang, J. Peng, L. Xu, J. Li and G. Wei, Synthesis, size control and fluorescence studies of gold nanoparticles in carboxymethylated chitosan aqueous solutions, Journal of Colloid and Interface Science, 316 (2), 398-404, (2007).
111. W. Li C. Fan, S. Zhao, J. Chen and X. Li, Efficient one pot synthesis of chitosan-induced gold nanoparticles by microwave irradiation, Materials Letters, 62 (20), 3518-3520, (2008).
112. N.Bakar M.Hussain, A.Mustapa, K.Low, N.Othman, F.Adam. . . ; , Synthesis of Various Size Gold Nanoparticles by Chemical Reduction Method with Different Solvent Polarity, Nanoscale Res Lett, 15 (140), 1-10, (2020).
113. Rebekah DePenning Minh Tran, Madeline Turner, Sonal Padalka, Effect of citrate ratio and temperature on gold nanoparticle size and morphology, Mater. Res. Express, 3 105027, (2016).
114. Basham J. I. Martin M. N., Chando P., Eah S. K., Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2D self-assembly, Langmuir, 26 7410- 7415, (2010).
115. Zhai M. Huang L., Peng J., Xu L., Li J., Wei G., Synthesis, size control and fluorescence studies of gold nanoparticles in cacboxymethylated chitosan aqueous solutions, Journal of Colloid and Interface Science, 316 398-404, (2007).
116. Elham Abbasi Roya Herizchi, Morteza Milani, Abolfazl Akbarzadeh, Artifi cial Cells, Current methods for synthesis of gold nanoparticles, Nanomedicine Biotechnology, 44 (2), 596-602, (2016).
117. S.F. Liu, Li, X.H., Li, Y.C., Li, Y.F., Li, J.R., Jiang, L, The influence of gold nanoparticle modified electrode on the structure of mercaptopropionic acid self-assembly monolayer, Electrochimica Acta, 51 427-431, (2005).
118. K. Fajerwerg T. Hezard, D. Evrard, et al., Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis, Journal of Electroanalytical Chemistry, 664 46-52, (2012).
119. J. Li D. Li, X. Jia, Gold nanoparticles decorated carbon fiber mat as a novel sensing platform for sensitive detection of Hg(II), Electrochemistry Communications, 42 30-33, (2014).
120. H.Shu G.Chang, K.Ji, M.Oyama, X.Liu, Y.He, Gold nanoparticles directly modified glassy carbon electrode for non-enzymatic detection of glucose, Applied Surface Science, 288 (2014), 524-529).
121. R. Boukherroub K. Turcheniuk, S. Szunerits, Gold-graphene nanocomposites for sensing and biomedical applications, J. Mater. Chem. C., 3 4301-4324, (2015b).
122. P Włodarczyk A Radoń, D Łukowiec, Structure, temperature and frequency dependent electrical conductivity of oxidized and reduced electrochemically exfoliated graphite, Physica E: Low-dimensional Systems and Nanostructures, 99 82-90, (2018).
123. Yi Zhang Yuehong Pang, Wanyu Li, Hongliu Ding, Xiaofang Shen, Synergetic accumulation and simultaneous determination of naphthol isomers on electrochemically reduced graphene oxide modified electrode, Journal of Electroanalytical Chemistry, 769 89-96, (2016).
124. Rong J. Hu C., Cui J., Yang Y., Yang L., Wang Y., Liu Y., Fabrication of a graphene oxide-gold nanorod hybrid material by electrostatic self-assembly for surface-enhanced Raman scattering, Carbon, 51 255-264, (2013).
125. Sungjin Park Daniel R. Dreyer, Christopher W. Bielawski, Rodney S. Ruoff,
The chemistry of graphene oxide, Chem. Soc. Rev., 39 228-240, (2010).
126. Álvarez P Botas C, Blanco P, Granda M, Blanco C, Santamaría R, Romasanta L, Verdejo R, López-Manchado M, Menéndez R., Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 65 156-164, (2013).
127. Šanđk F. Poh H.L, Ambrosi A., Zhao G., Sofer Z., Pumera M., Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties, Nanoscale., 4 (11), 3515-22, (2012).
128. K.L.Foo N.I.Zaaba, U.Hashim, S.J.Tan, Wei-WenLiu, C.H.Voo., Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering, 184 469-477, (2017).
129. Jr William S.Hummers, Richard E.Offeman, Preparation of graphitic oxide,
Journal of American Chemical Society, 80 (6), 1339-1339, (1958).
130. Danil W Boukhvalov, Oxidation of a Graphite Surface: The Role of Water, J. Phys. Chem. C, 118 (47), 27594-27598, (2014).
131. C. Hu, J. Rong, J. Cui, Y. Yang, L. Yang, Y. Wang and Y. Liu, Fabrication of a graphene oxide-gold nanorod hybrid material by electrostatic self- assembly for surface-enhanced Raman scattering, Carbon, 51 255-264, (2013).
132. Mei Yan Shenguang Ge, Juanjuan Lu, Meng Zhang, Feng Yu, Jinghua Yu, Xianrang Song, Shilin Yu, Electrochemical biosensor based on graphene oxide–Au nanoclusters composites for l-cysteine analysis, Biosensors and Bioelectronics, 31 (1), 49-54, (2012).
133. Hoàng Nhâm, Hóa học Vô cơ, 2, Nhà xuất bản giáo dục, (2002).
134. Trần Tứ Hiếu & Nguyễn Văn Nội Phạm Hùng Việt, Hóa Học Môi Trường,
Trường Đại học Khoa học Tự nhiên Hà Nội, (1999).
135. U.S. Department of Health and Human Services, Toxicological Profile for Mercury, Agency for Toxic Substances and Disease Registry, 1999).
136. D. Kim Q. Wang, D.D. Dionysiou, G. a Sorial, D. Timberlake, Sources and remediation for mercury contamination in aquatic systems--a literature review, Environ. Pollut., 131 (2), 323-326, (2004).
137. M. B. González-García D. Martín-Yerga, A. Costa-García, Electrochemical determination of mercury: a review, Talanta, 116 1091-1104, (2013).
138. C. and M.S. Gustin Sladek, Mercury speciation in environmental solid samples using thermal release technique with atomic aborption detection, Analytica Chimica Acta, 621 (2), 148-154, (2008).
139. K. H. Grobecker & A. Detcheva, Validation of mercury determination by solid sampling Zeeman atomic absorption spectrometry and a specially designed furnace, Talanta, 70 (5), 962-965, (2006).
140. Ildikó V. TÓTH M. Fátima SILVA, António O. S. S. RANGEL, Determination of Mercury in Fish by Cold Vapor Atomic Absorption Spectrophotometry Using a Multicommuted Flow Injection Analysis System, Analytical sciences, 22 861 - 864, (2006).
141. M. Foulkes K. Leopold, P. Worsfold, Methods for the determination and speciation of mercury in natural waters-A review, Analytica Chimica Acta, 663 (2), 127-138, (2010).
142. M. Barbaro B. Passariello, S. Quaresima, A. Casciello, and A. Marabini, Determination of mercury by inductively coupled plasma - mass spectrometry, Microchemical Journal, 54 (4), 348-354, (1996).
143. U. Vollkopf & E. R. Denoyer A. Stroh, Analysis of samples containing large amounts of dissolved solids using microsampling flow injection inductively coupled plasma mass spectrometry,, Journal of Analytical Atomic Spectrometry, 7 (8), 1201-1205, (1992).