12. F.R.Tester, F. Karkalas et al., Carbohydrates - Classification and Properties, in Encyclopedia of Food Sciences and Nutrition (Second Edition), Journals & Books Academic Press, 2003, 862-875.
13. B. Loedolff, Functional roles of raffinose family oligosaccharides: Arabidopsis case studies in seed physiology, biotic stress and novel carbohydrate engineering, 2015. https://scholar.sun.ac.za/handle/10019.1/98052. University of Stellenbosch
14. C. E. Dierking, D. K. Bilyeu, Association of a soybean raffinose synthase gene with low raffinose and stachyose seed phenotype, Plant Genome, 2008, 1, 135.
15. F. M. Valentine, D. T. Joann et al., Silencing of soybean raffinose synthase gene reduced raffinose family oligosaccharides and increased true metabolizable energy of poultry feed, Frontier in Plant Science, 2017, 8, 1–11.
16. C. S. Mine, C. Pengyin et al., Interrelationships among agronomic and seed quality traits in an interspecific soybean recombinant inbred population, Crop Science, 2006, 46, 1253-1259.
17. K. Vineet, A. Anita et al., Sucrose and raffinose family oligosaccharides (RFOs) in soybean seeds as influenced by genotype and growing location, Agricultural and Food Chemistry, 2010, 58, 5081-5085.
18. A. Blöchl, T. Peterbauer et al., Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds, Plant Physiology, 2007, 164, 1093–1096.
19. B. A. Sheila, O.L. Ralph et al., Maturation proteins and sugars in desiccation tolerance of developing soybean seeds, Plant Physiology, 1992, 100, 225–230.
20. P. Baohai, L. Defa et al., Effect of Dietary Supplementation With α- Galactosidase Preparation and Stachyose on Growth Performance, Nutrient Digestibility and Intestinal Bacterial Populations of Piglets, Food Science and Technology, 2010, 327-337. http://doi.org/10.1080/00039420215627
Có thể bạn quan tâm!
- Kết Quả Phân Tích Sản Phẩm Pcr Của Chỉ Thị Phân Tử Gols-Seg F1 Và Gols-Seg F3 Với Các Cây Đột Biến T2
- Tỉ Lệ Carbohydrate Dạng Stachyose Và Sucrose Trên Tổng Khối Lượng Carbohydrate Hòa Tan Trong Hạt Đậu Tương
- Việc Lựa Chọn Trình Tự Mục Tiêu Trong Thiết Kế Cấu Trúc Chỉnh Sửa Gen Trên Đậu Tương
- Nghiên cứu ứng dụng công nghệ CRISPR/Cas9 trong tạo đột biến gen GmGOLS03, GmGOLS19 trên cây đậu tương Glycine max L. Merrill nhằm giảm lượng đường họ Raffinose trong hạt - 15
Xem toàn bộ 122 trang tài liệu này.
21. H. D. William, C. J. Thomas et al., Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and
phytic acid phenotype on soybean seeds, Plant Physiology, 2002, 128 , 650– 660.
22. G. Marie, J. Sidsel et al., Nitrogen split dose fertilization, plant age and frost effects on phytochemical content and sensory properties of curly kale (Brassica oleracea L. var. sabellica), Food Chemistry, 2016, 197, 530-538.
23. J. Buitink, A. M. Hemminga et al., Is there a role for oligosaccharides in seed longevity? An assessment of intracellular glass stability, Plant Physiology, 2000, 122, 1217–1224.
24. H. Uta, S. Klaus, Distribution and immunolocalization of stachyose synthase in Cucumis melo L., Planta, 1991, 185, 479–486.
25. M.P. Dey, Oligosaccharides in Dey PM, Harborne JB, Quemener B, Brillouer JM. Ciceritol, a pinitol disaccharide eds. Methods in plant biochemistry, 1990, Phytochemistry Academic Press, 189–218.
26. W. Bridgette, W. Kevin, Prebiotic inulin-type fructans and galacto- oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders, Gastroenterology Hepatology, 2017, 32, 1, 64-68.
27. R. L. Obendorf, Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance, Seed Science Research, 1997, 17, 2, 63 - 74.
28. H. Marcin, O. L. Ralph, Seed desiccation tolerance and storability: Dependence on flatulence-producing oligosaccharides and cyclitols—review and survey, Seed Science Research,1994, 4, 4, 385 - 405.
29. T. Peterbauer, J. Mucha et al., Chain‐elongation of raffinose in pea seeds. Isolation, characterization, and molecular cloning of a multifunctional enzyme catalyzing the synthesis of stachyose and verbascose, Chemical Biology, 2002, 277, 194–200.
30. P. Thomas, L. B. Leslaw et al., Analysis of the raffinose family oligosaccharide pathway in pea seeds with contrasting carbohydrate composition, Plant Physiology, 2001, 127, 1764 – 1772.
31. S. Sengupta, S. Mukherjee et al., Significance of galactinol and raffinose family oligosaccharide synthesis in plants, Frontier Plant Science, 2015, 6, 11.
32. R. R. Neelam, R. Redekar et al., Genetic interactions regulating seed phytate and oligosaccharides in soybean (Glycine max L.), PLoS One, 2020;15(6):e0235120. https://doi.org/10.1371/journal.pone.0235120.
33. R. Gangl, R. Behmüller et al., Molecular cloning of AtRS4, a seed specific multifunctional RFO synthase/galactosylhydrolase in Arabidopsis thaliana, Frontier Plant Science, 2015, 6, 789.
34. C. M. Eugenia, L. D. O. Benito et al., Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes, Agricultural and Food Chemistry, 1990, 38, 351–355.
35. B. Markus, M. Philippe et al., Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L: cold acclimation, translocation, and sink to source transition: discovery of chain elongation enzyme, Plant Physiology, 1994, 105, 1335–1338.
36. A. Nishizawa, Y. Yabuta et al., Galactinol and raffinose constitute a novel function to protect plants from oxidative damage, Plant Physioly, 2008, 147, 3, 1251–1263.
37. T. Taji, C. Ohsumi et al., Important roles of drought- and cold inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana, Plant, 2002, 29, 4, 417-426.
38. D. K. Bilyeu, J. W. Wiebold, Environmental stability of seed carbohydrate profiles in soybeans containing different alleles of the raffinose synthase 2 (RS2) gene., Agricultural and Food Chemistry, 2016, 64, 1071–1078.
39. D. Qiu, T. Vuong et al., Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean, Theoretical and Applied Genetics, 2015, 128 (11), 2167-2176.
40. R. Barrangou, C. Fremaux et al., CRISPR provides acquired resistance against viruses in prokaryotes, Science, 2007, 315, 1709–1172.
41. E. Deltcheva, K. Chylinski et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 2011, 471, 602–607.
42. P. Mali, L. Yang et al., RNA-guided human genome engineering via Cas9, Science, 2013, 339, 823–826.
43. L. Cong, A. F. Ran et al., Multiplex genome engineering using CRISPR/Cas systems, Science, 2013, 339, 819–823.
44. E. Pennisi, The CRISPR craze, Science, 2013, 341, 833–836.
45. W. Shaohui, Z. Shuaibin et al., Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system, Plant Cell Report, 2015, 34, 1473-1476.
46. E. Hirotaka, M. Naoko et al., The CRISPR/Cas9 system to disrupt latent HIV-1 provirus, Scientific reports, 2013, 3, 2510.
47. W. Xue, C. Sidi et al., CRISPR-mediated direct mutation of cancer genes in the mouse liver, Nature, 2014, 514(7522), 380-384.
48. A. F. Ran, H. D. Patrick et al., Genome engineering using the CRISPR-Cas9 system, Nature protocols, 2013, 8, 2281-2308.
49. K. Chylinski, S. K. Makarova et al. Classification and evolution of type II CRISPR-Cas systems, Nucleic Acids Research, 2014, 42, 6091-6105.
50. P. D. Weeks, H. M. Spalding et al., Use of designer nucleases for targeted gene and genome editing in plants., Plant Biotechnology, 2015, 14, 483-495.
51. G. Chunling, B. Paola et al., Mechanism of nonhomologous end-joining in mycobacteria: a low-fidelity repair system driven by Ku, ligase D and ligase C., Nature Structural and Molecular Biology, 2005, 12, 304–312.
52. H. Nishimasu, A.F. Ran et al., Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, 2014, 156, 935–949.
53. H.S. Sternberg, S. Redding et al., DNA interrogation by the CRISPR RNA- guided endonuclease Cas9., Nature, 2014, 507, 62–67.
54. C. Le, M. A. Luciano et al., Multiplex genome engineering using CRISPR/Cas systems, Science, 2013, 339, 121, 819–823.
55. A. F. Ran, H. D. Patrick et al., Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity, Cell, 2013, 154, 1380–1389.
56. B Chen et al.., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system., Cell, 2013, 155, 1479–1491.
57. M.A. Korotkova , S.V. Gerasimova et al., Current achievements in modifying crop genes using CRISPR/Cas system, Vavilov J. Genet. iBreed, 2019, 23, 1, 29-37.
58. Y. Kanazashi, A. Hirose et al., Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA, Plant Cell, 2018, 37, 3, 553-563.
59. Y. Cai, L. Chen et al., CRISPR/Cas9-mediated genome editing in soybean hairy roots., PLoS One, 2015, 10, e0136064.
60. B. Mengyan, Y. Juehui et al., Generation of a multiplex mutagenesis population via pooled CRISPR‐Cas9 in soya bean, Plant Biotechnology, 2020, 18, 3, 721- 731.
61. W. Jie, K. Huaqin et al., Generation of seed lipoxygenase-free soybean using CRISPR-Cas9, Crop , 2020, 8, 3, 432-439.
62. W. Nan, L. Qiang et al., Construction and Analysis of GmFAD2-03 and GmFAD2-2A Soybean Fatty Acid Desaturase Mutants Based on CRISPR/Cas9 Technology, Molecular Sciences, 2020, 3, 21, 1104.
63. Z. Peipei, D. Hongyang et al., Multiplex CRISPR/Cas9‐mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus, Plant Biotechnology, 2020, 18, 6, 1384-1395.
64. L. Zhaobo, C. Qun et al., Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time, Crop, 2021, 9, 4, 767-776.
65. C. Zhandong Cai, X. Peiqi Xian et al., CRISPR/Cas9-mediated gene editing of GmJAGGED1 increased yield in the low-latitude soybean variety Huachun 6, Plant Biotechnology, 2021, https://doi.org/10.1111/pbi.13673 .
66. C. Xiao, Y. Suxin et al., Generation of male-sterile soybean lines with the CRISPR/Cas9 system, Crop, 2021, 9, 6, 1270-1277.
67. K. Yoko, A. Fumitaka et al., A rapid method for detection of mutations induced by CRISPR/Cas9-based genome editing in common wheat, Plant Biotechnology (Tokyo), 2020, 37, 2, 247–251.
68. F.S. Andrew, L. Lena et al., Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao, Frontier Plant Science, 2018, 2, 9, 269-269.
69. G. Junping, W Genhong et al., CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum, Plant Molecular Biology, 2015, 87, 1-2, 99-110.
70. M. Mickael, V. Roberto et al., DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins, Frontier Plant Science, 2016, 7, 1904.
71. L. Choun-Sea, H. T. Chen et al., Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration, Plant Biotechnology, 2018, 16, 7, 1295-1310.
72. S. Hongmei, L. Ziliang et al., The application of CRISPR/Cas9 in hairy roots to explore the functions of AhNFR1 and AhNFR5 genes during peanut nodulation, BMC Plant Biology, 2020, 20, 417.
73. B. Guillaume, G. David et al., Efficient Genome Editing Using CRISPR/Cas9 Technology in Chicory, Molecular Science, 2019, 20, 5, 1155.
74. B. M. Nathaniel, J. H. Shelley et al., First-generation genome editing in potato using hairy root transformation, Plant Biotechnology, 2020,18, 2201–2209.
75. N. Sevon, C. Oksman, et al., Agrobacterium rhizogenes-Mediated Transformation: Root Cultures as a Source of Alkaloids, Planta Medica, 2002, 68, 859-868.
76. C. D. Mary, T.A. David et al., Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells, Nature, 1992, 295, 432–434.
77. I.I. Ozyigit, I. Dogan et al., Agrobacterium rhizogenes‐mediated transformation and its biotechnological applications in crops, Crop Improvement, 2013, 1- 48.
78. H. B. Zhi, D. Min, Hairy Root and Its Application in Plant Genetic Engineering, Integrative, Plant Biology, 2006, 48, 2, 121−127.
79. A. Kereszt, D. Li et al., Agrobacterium rhizogenes-mediated transformation of soybean to study root biology, Nature Protocols, 2007, 2, 4, 948–952.
80. B.T. Jacobs, R.P. LaFayette, et al. Targeted genome modifications in soybean with CRISPR/Cas9, BMC Biotechnology, 2015, 16, 15.
81. L. Chen L, Y. Cai et al., Soybean hairy roots produced in vitro by Agrobacterium rhizogenes-mediated transformation, Crop, 2018, 6(2), 162- 171.
82. N. Yogananth, M. B. Jothi et al., TLC method for determination of plumbagin in hairy root culture of Plumbago rosea L, Global Journal of Biochemistry and Biotechnology, 2009, 4, 1 , 66-69.
83. X. Sun X, Z. Hu et al., Targeted mutagenesis in soybean using the CRISPR- Cas9 system, Scientific Reports, 2015, 5, 1–10.
84. Ninh Thị Thảo, Lê Tiến Vinh, Lã Hoàng Anh, Nguyễn Thị Thủy, Nguyễn Thị Phương Thảo, Nghiên cứu cảm ứng và nuôi cấy rễ tơ cây đan sâm (Salvia miltiorrhiza Bunge), Tạp Chí Khoa học và Phát triển, 2015, 13, 2, 251-258.
85. Phí Thị Cẩm Miện, Nguyễn Minh Đức, Kim Anh Tuấn, Nguyễn Đức Bách, Phạm Bích Ngọc, Chu Hoàng Hà, Lê Thị Vân Anh, Dương Phương Thảo, Nghiên cứu chuyển gen tạo rễ tơ cây xáo tam phân (Paramignya trimera) thông qua Agrobacterium rhizogenes K599, Tạp chí Khoa học và Công nghệ Việt Nam, 2020, 62, 2, 59-64.
86. S. Vibha, L Jamie et al., Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome, Plant Cell, Tissue and Organ Culture (PCTOC), 2017, 129, 153-160.
87. D. T. Phat, N. X. Cuong et al., Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-03 and GmFAD2-19 genes to yield a high oleic, low linoleic and α-linolenic acid α-linolenic acid phenotype in soybean, BMC Plant Biology, 2019, 19, 1, 311.
88. T. Noriaki, T. Masahiro, S. Shigeru, The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specific expression of the GUS reporter gene in transgenic Arabidopsis, Gene, 2015, 567, 2, 244-250.
89. Z. Xiaoxiao, X. Yajie et al., An efficient genotyping method for genome- modified animals and human cells generated with CRISPR/Cas9 system., Scientific Reports, 2014, 4, 1–8.
90. D. T. Ta, N. M. Dung et al., Production of drought tolerant transgenic soybean expressing coda gene under regulation of a water stress inducible promoter, Pakistan Journal of Botany, 2020, 52, 3, 793–799.
91. T. Joshi, R. M. Fitzpatrick et al., Soybean knowledge base (SoyKB): A web resource for integration of soybean translational genomics and molecular breeding, Nucleic Acids Research, 2014, 42, 1245–1252.
92. S. Jeremy, C. B. Steven et al., Genome sequence of the palaeopolyploid soybean, Nature, 2010, 463, 178–183.
93. M. Stemmer, T. Thumberger et al., CCTop: An Intuitive, Flexible and Reliable CRISPR / Cas9 Target , Prediction Tool, 2015, 9, 1–11.
94. C. Keyes, S. Subramanian et al., Hairy root as a model system for undergraduate laboratory curriculum and research., Biology Science, 2009, 35, 6-11.
95. C. Brooks, V. Nekrasov et al., Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/ CRISPR-Associated9 System., Plant Physiology 2014,166, 1292– 1297.
96. J. Zhou, J. Wang et al., Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting, FEBS, 2014, 7, 1717-1725.
97. K. Xie, B. Minkenberg et al., Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system, Proc Natl Acad Sci USA, 2105, 112, 11, 3570–3575.