[112] Wahyuni E, et al., "Removal of toxic metal ions in water by photocatalytic method". American Chemical Science Journal, (2015). 5(2): p. 194-201.
[113] Wahyuni Endang Tri and Aprilita Nurul Hidayat, "Photoreduction Processes over TiO2 Photocatalyst", in Photocatalysts: Applications and Attributes. 2018, IntechOpen.
[114] Wang Donghai, et al., "Ternary self-assembly of ordered metal oxide− graphene nanocomposites for electrochemical energy storage". ACS nano, (2010). 4(3): p. 1587-1595.
[115] Wang Jia‐Zhao, et al., "Graphene‐Encapsulated Fe3O4 Nanoparticles with 3D Laminated Structure as Superior Anode in Lithium Ion Batteries". Chemistry-A European Journal, (2011). 17(2): p. 661-667.
[116] Wang Lawrence K, Hung Yung-Tse, and Shammas Nazih K, "Physicochemical treatment processes". 2005: Springer.
[117] Wang Zeyan, et al., "Crystal facets controlled synthesis of graphene@ TiO 2 nanocomposites by a one-pot hydrothermal process". CrystEngComm, (2012). 14(5): p. 1687-1692.
[118] Williams Graeme, Seger Brian, and Kamat Prashant V, "TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide". ACS nano, (2008). 2(7): p. 1487-1491.
[119] Wingenfelder Ulla, et al., "Removal of heavy metals from mine waters by natural zeolites". Environmental Science & Technology, (2005). 39(12): p. 4606-4613.
[120] Witek-Krowiak Anna, Szafran Roman G, and Modelski Szymon, "Biosorption of heavy metals from aqueous solutions onto peanut shell as a low-cost biosorbent". Desalination, (2011). 265(1-3): p. 126-134.
Có thể bạn quan tâm!
- Nghiên Cứu Quá Trình Xử Lý Mẫu Nước Thải Thực Tế
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 19
- Nghiên cứu tổng hợp vật liệu TiO2- Fe2O3/GNP từ quặng ilmenit và graphit định hướng chuyển hóa Cr(VI) trong nước thải công nghiệp quốc phòng - 20
Xem toàn bộ 173 trang tài liệu này.
[121] Wu Shixin, et al., "Electrochemical deposition of semiconductor oxides on reduced graphene oxide-based flexible, transparent, and conductive
electrodes". The Journal of Physical Chemistry C, (2010). 114(27): p. 11816-11821.
[122] Xiang Quanjun, Yu Jiaguo, and Jaroniec Mietek, "Enhanced photocatalytic H2-production activity of graphene-modified titania nanosheets". Nanoscale, (2011). 3(9): p. 3670-3678.
[123] Xiang Quanjun, Yu Jiaguo, and Jaroniec Mietek, "Graphene-based semiconductor photocatalysts". Chemical Society Reviews, (2012). 41(2): p. 782-796.
[124] Yan Jun, et al., "Fast and reversible surface redox reaction of graphene– MnO2 composites as supercapacitor electrodes". Carbon, (2010). 48(13): p. 3825-3833.
[125] Yan Jun, et al., "Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors". Electrochimica Acta, (2010). 55(23): p. 6973-6978.
[126] Yang Shubin, et al., "Graphene‐Based Nanosheets with a Sandwich Structure". Angewandte Chemie International Edition, (2010). 49(28): p. 4795-4799.
[127] Yang Shubin, et al., "Fabrication of graphene‐encapsulated oxide nanoparticles: towards high‐performance anode materials for lithium storage". Angewandte Chemie International Edition, (2010). 49(45): p. 8408-8411.
[128] Yin Zongyou, et al., "Electrochemical deposition of ZnO nanorods on transparent reduced graphene oxide electrodes for hybrid solar cells". Small, (2010). 6(2): p. 307-312.
[129] Yu Bin, et al., "The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper". Journal of Hazardous Materials, (2000). 80(1-3): p. 33-42.
[130] Yu Yunguang, et al., "Electrostatic Self-assembly Aided Synthesis of CdS/Cs3PW12O40 Hybrids for Photocatalytic Reduction of Cr (VI)". Water, Air, Soil Pollution, (2020). 231(7): p. 1-18.
[131] Yuvaraja Gutha, et al., "Biosorption of Pb (II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste". Colloids and Surfaces B: Biointerfaces, (2014). 114: p. 75-81.
[132] Zahra Gholamvande, et al., "Graphene/TiO2 nano-composite for photocatalytic removal of pharmaceuticals from water". World Congress on Water, Climate and Energy, (2012): p. 1-4.
[133] Zhang Jintao, Xiong Zhigang, and Zhao XS, "Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation". Journal of Materials Chemistry, (2011). 21(11): p. 3634-3640.
[134] Zhang Xiao-Yan, et al., "Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting". Journal of Materials Chemistry, (2010). 20(14): p. 2801-2806.
[135] Zhou Guangmin, et al., "Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries". Chemistry of Materials, (2010). 22(18): p. 5306-5313.
[136] Zhu Chengzhou, et al., "One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets". Chemical communications, (2010). 46(38): p. 7148-7150.
[137] Zhu Jiahua, et al., "Magnetic graphene nanoplatelet composites toward arsenic removal". Journal of Solid State Science Technology, (2012). 1(1):
p. M1-M5.
[138] Zhu Jixin, et al., "Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes". The Journal of Physical Chemistry C, (2011). 115(16): p. 8400- 8406.
[139] Zhu Shenmin, et al., "Fe2O3/TiO2 photocatalyst of hierarchical structure for H2 production from water under visible light irradiation". Microporous mesoporous materials, (2014). 190: p. 10-16.
[140] Zou Jian-Ping, et al., "Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb (III) and Sb (V) from water". ACS applied materials, (2016). 8(28): p. 18140-18149.