Nghiên cứu khả năng phân hủy hydrocarbon dầu mỏ của một số chủng vi khuẩn tía quang hợp tạo màng sinh học phân lập tại Việt Nam - 16


cells using annonaceous acetogenins for biofilm formation stimulation on polyurethane foam, J. Environ. Chem. Eng., 2017, 5 (1), 189-195.

121. F. Deng, C. Liao, C. Yang, C. Guo and Z. Dang, Enhanced biodegradation of pyrene by immobilized bacteria on modified biomass materials, Int. Biodeterior. Biodegrad., 2016, 110, 46-52.

122. D. Hou, X. Shen, Q. Luo, Y. He, Q. Wang & Q. Liu, Enhancement of the diesel oil degradation ability of a marine bacterial strain by immobilization on a novel compound carrier material, Mar. Pollut. Bull., 2013, 67 (1-2), 146–151.

123. Đỗ Văn Tuân, Lê Thị Nhi Công, Đỗ Thị Liên, Đồng Văn Quyền, Đánh giá khả năng phân hủy các thành phần hydrocarbon trong nước thải nhiễm dầu tại kho xăng dầu Đỗ Xá, Hà Nội bằng màng sinh học từ sinh vật gắn trên vật liệu mang xơ dừa, Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ, 2017, 33(2S), 274-279.

124. F. Yamaga, K. Washio, M. Morikawa, Sustainable Biodegradation of Phenol by Acinetobacter calcoaceticus P23 Isolated from the Rhizosphere of Duckweed Lemna aoukikusa, Environ. Sci. Technol., 2010, 44 (16), 6470-6474.

125. C.V. Ramana, C. Sasikala, K. Arunasri, P.A. Kumar, T. Srinivas, S. Shivaji, P. Gupta, J. Süling, J.F. Imhoff, Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium, Int. J. Syst Evol. Microbiol., 2006, 56 (9), 2157-2164.

126. K.J. Lo, S.K. Lee, C.T. Liu, Development of a low-cost culture medium for the rapid production of plant growthpromoting Rhodopseudomonas palustris strain PS3, PloS one, 2020, 15 (7), e0236739.

127. T. Kulakovskaya, A. Zvonarev, K. Laurinavichius, G. Khokhlova, M. Vainshtein, Efect of Fe on inorganic polyphosphate level in autotrophic and heterotrophic cells of Rhodospirillum rubrum, Arch. Microbiol., 2019, 201 (9), 1307–1312.

128. Nguyễn Thị Minh Đức, Thực tập vi sinh học, NXB Đại học Quốc Gia, 2001, Hà Nội.

Có thể bạn quan tâm!

Xem toàn bộ 144 trang tài liệu này.

129. C. Francke, and J. Amesz, The size of the photosynthetic unit in purple bacteria, Photosynth. Res., 1995, 46 (1), 347-352.


130. G.A. O'Toole, R. Kolter, The initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis, Mol. Microbiol., 1998, 28(3), 449-461.

131. M. Morikawa, Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species, J. Biosci. Bioeng., 2006, 101 (1), 1-8.

132. C.A. Smith and A.M. Hussey, Gram stain protocols, American Society for Microbiology, 2005, 1, 14.

133. M.J. Alessandrello, M.S.J. Tomás, E.E. Raimondo, D.L. Vullo and M.A. Ferrero, Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions, Mar. Pollut. Bull., 2017, 122 (1-2), 156-160.

134. Z.A. Khan, M.F. Siddiqui, S. Park, Current and emerging methods of antibiotic susceptibility testing, Diagnostics., 2019, 9 (2), 49.

135. J. Sambrook, D.W. Russell, Molecular cloning: a laboratory manual, Vol. 1. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 2001.

136. S.R. Noh, J.A. Kim, H.K. Cheong, M. Ha, Y.K. Jee, M.S. Park, K.H. Choi, H. Kim,

S.I. Cho, K. Choi, D. Paek, Hebei Spirit oil spill and its long-term effect on children's asthma symptoms, Environ. Pollut., 2019, 248, 286-294.

137. K. Venkidusamy and M. Megharaj, A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments, Front. Microbiol., 2016, 7, 1071.

138. R.T. Garrett, M. Bhakoo, Z. Zhang, Review: Bacterial adhesion and biofilm on surfaces, Progress in Natural Science, 2008, 18 (9), 1049-1056.

139. R. Chakraborty, S.M. O'Connor, E. Chan, and J.D. Coates, Anaerobic Degradation of Benzene, Toluene, Ethylbenzene, and Xylene Compounds by Dechloromonas Strain RCB, Appl. Environ. Microbiol., 2005, 71 (12), 8649 – 8655.

140. M.R. Fries, J. Zhou, J. Chee-Sanford and J.M. Tiedje, Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats, Appl. Environ. Microbiol., 1994, 60 (8), 2802-2810.

141. Le Thi Nhi Cong, Cung Thi Ngoc Mai, Vu Thi Thanh, Nghiem Ngoc Minh, Hoang Phuong Ha, Do Thi Lien, Do Thi To Uyen, Pyrene degradation of biofilm-forming Paracoccus sp. DG25 isolated from oil polluted samples collected in petroleum storage Ducgiang, Hanoi, J. Vietnam. Environ., 2014, 6 (2), 178-183.


142. Nghiem Ngoc Minh, Nguyen Huong Quynh, Cung Thi Ngoc Mai, Biological characteristics and some factors affecting the pyrene-biodegrading ability of strain BTL4 isolated from industrial wasterwater at industrial zone Tuliem, Hanoi, J. Biotechnol., 2012, 10 (2), 397-385.

143. Z. Yan, Y. Zhang, H. Wu, M. Yang, H. Zhang, Z. Hao and H. Jiang, Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation, RSC Adv., 2017, 7 (74), 46690-46698.

144. K.J. Rockne, J.C. Chee-Sanford, R.A. Sanford, B.P. Hedlund, J.T. Staley, and S.E. Strand, Anaerobic Naphthalene Degradation by Microbial Pure Cultures under Nitrate-Reducing Conditions, Appl. Environ. Microbiol., 2000, 66 (2), 1595 – 1601.

145. M. Zhang, F. Zhang, Z. Ma & Y. Wan, Nitrogen Biogeochemistry of Anaerobic Biodegradation of Naphthalene, Water, Air, & Soil Pollution, 2019, 230 (222).

146. Y.J. Liu, A.N. Zhang, X.C. Wang, Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03, Biochem. Eng. J., 2009, 44 (2–3), 187-192.

147. Y. Nor Suhaila, A. Ariff, M. Rosfarizan and I. Abdul Latif, S.A. Ahmad, M.N. Norazah, M.Y.A. Shukor, Optimization of Parameters for Phenol Degradation by Rhodococcus UKM-P in Shake Flask Culture, Proceedings of the world congress on engineering, 2010, 1.

148. Cung Thị Ngọc Mai, Thái Thị Thùy Dương, Nguyễn Văn Bắc, Nguyễn Thị Thu Huyền, Nghiêm Ngọc Minh, Phân lập chủng vi khuẩn BTLP1 có khả năng phân hủy phenol bằng phương pháp phân tích trình tự nucleotit của đoạn gen 16S rARN, Tạp chí Khoa học và Công nghệ, 2012, 50 (1), 13-19.

149. W. Wang, S. Wang, X. Ren, Z. Hu, S. Yuan, Rapid establishment of phenol- and quinoline-degrading consortia driven by the scoured cake layer in an anaerobic baffled ceramic membrane bioreactor, Environ. Sci. Pollut. Res., 2017, 24 (33), 26125–26135.

150. J. Lin, L. Gan, Z. Chen, R. Naidu, Biodegradation of tetradecane using Acinetobacter venetianus immobilized on bagasse, Biochem. Eng. J., 2015, 100, 76- 82.

151. Y. Liang, X. Zhang, D. Dai, G. Li, Porous biocarrier-enhanced biodegradation of crude oil contaminated soil, Int. Biodeterior. Biodegrad., 2009, 63, 80-87.


152. W.E. Levison, K.E. Stormo, H.L. Tao, R.L. Crawford, Hazardous waste cleanup and treatment with encapsulated or entrapped microorganisms, Biological Degradation and Bioremediation of Toxic Chemicals, Chapman & Hall, London, 1994, 455–469.

153. X. Wang, X. Wang, M. Liu, Y. Bu, J. Zhang, J. Chen & J. Zhao, Adsorption– synergic biodegradation of diesel oil in synthetic seawater by acclimated strains immobilized on multifunctional materials, Mar. Pollut. Bull., 2015, 92 (1-2), 195– 200.

154. Y. Chen, B. Yu, J. Lin, R. Naidu & Z. Chen, Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material, Chem. Eng. J., 2016, 289, 463–470.

155. J. Cheng, H. Dong, H. Zhang, L. Yuan, H. Li, L. Yue, J. Hua, J. Zhoua, Improving CH4 production and energy conversion from CO2 and H2 feedstock gases with mixed methanogenic community over Fe nanoparticles, Bioresour. Technol., 2020, 314, 123799.

156. P. Chandran, N. Das, Degradation of diesel oil by immobilized Candida tropicalis and biofilm formed on gravels, Biodegradation, 2011, 22 (6), 1181-1189.

157. P.W.G. Liu, J.W. Liou, Y.T. Li, W.L. Su, C.H. Chen, International Biodeterioration & Biodegradation The optimal combination of entrapped bacteria for diesel remediation in seawater, Int. Biodeterior. Biodegrad., 2015, 102, 383- 391.

158. K.L. Simons, P.J. Shepparda, E.M. Adetutu, K. Kadali, A.L. Juhasz, M. Manefield,

P.M. Sarma, B. Lal, A.S. Ballae, Carrier mounted bacterial consortium facilitates oil remediation in the marine environment, Bioresour. Technol., 2013, 134, 107- 116.

159. Y. Zhang, W. Gao, F. Lin, B. Han, C. He, Q. Li, X. Gao, Z. Cui, C. Sun & L. Zheng, Study on immobilization of marine oil-degrading bacteria by carrier of algae materials, World J. Microbiol. Biotechnol., 2018, 34 (6), 1-8.

160. Ł. Ławniczakl, E. Kaczorek, A. Olszanowski, The influence of cell immobilization by biofilm forming on the biodegradation capabilities of bacterial consortia, World J. Microbiol. Biotechnol., 2011, 27 (5), 1183–1188.


161. S.N. Nunal, S.M.S. Santander-de Leon, E. Bacolod, J. Koyama, S. Uno, M. Hidaka,

T. Yoshikawa & H. Maeda, Bioremediation of heavily oil-polluted seawater by a bacterial consortium immobilized in cocopeat and rice hull powder, Biocontrol Sciences, 2014, 19 (1), 11–22.

162. J. Xue, Y. Wu, Z. Liu, M. Li, X. Sun, H. Wang & B. Liu, Characteristic Assessment of Diesel-degrading Bacteria Immobilized on Natural Organic Carriers in Marine Environment: the Degradation Activity and Nutrient, Scientific Reports, 2017, 7 (1), 1-9.

163. G.E. Wright & M.T. Madigan, Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobiumvannielii, Appl. Environ. Microbiol., 1991, 57 (7), 2069–2073.

164. S. Lamichhane, K.C. Bal Krishna, R. Sarukkalige, Polycyclic aromatic hydrocarbons (PAHs) removal by sorption: a review, Chemosphere, 2016, 148, 336-353.

165. R. Farber, I. Dabush-Busheri, G. Chaniel, S. Rozenfeld, E. Bormashenko, V. Multanen, R. Cahan, Biofilm grown on wood waste pretreated with cold low- pressure nitrogen plasma: Utilization for toluene remediation, Int. Biodeterior. Biodegrada., 2019, 139, 62-69.

166. S. Manohar, C.K. Kim, T.B. Karegoudar, Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam, Appl. Microbiol. Biotechnol., 2001, 55 (3), 311-316.

167. X.Q. Tao, Q.N. Lu, J.P. Liu, T. Li, L.N. Yang, Rapid degradation of Phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads, Int. J. Environ. Res. Public Health, 2009, 6 (9), 2470-2480.

168. R. Huang, W. Tian, Q. Liu, H. Yu, X. Jin, Y. Zhao, Y. Zhou, G. Feng, Enhanced biodegradation of pyrene and indeno (1,2,3-cd) pyrene using bacteria immobilized in cinder beads in estuarine wetlands, Mar. Pollut. Bull., 2016, 102 (1), 128-133.

169. H. Zhang, J. Tang, L. Wang, J. Liu, R.G. Gurav, K. Sun, A novel bioremediation strategy for petroleum hydrocarbon pollutants using salt tolerant Corynebacterium variabile HRJ4 and biochar, J. Environ. Sci., 2016, 47, 7-13.

170. Lê Thị Nhi Công, Cung Thị Ngọc Mai, Đỗ Văn Tuân, Đồng Văn Quyền, Khả năng phân hủy hydrocarbon thơm của màng sinh học từ vi sinh vật gắn trên giá thể


cellulose ở hệ thử nghiệm dung tích 50 lít, Tạp chí Công nghệ Sinh học, 2016, 14 (4), 796-775.

171. M. Lin, Y. Liu, W. Chen, H. Wang, X. Hu, Use of bacteria-immobilized cotton fiber to absorb and degrade crude oil, Int. Biodeterior. Biodegrad., 2014, 88, 8-12.

172. W.F.M. Röling, I.M. Head, S.R. Later, The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects, Res. Microbiol., 2003, 154 (5), 321-328.

173. A.R. Gentili, M.A. Cubitto, M. Ferrero, M.S. Rodriguéz, Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes, Int. Biodeterior. Biodegrad., 2006, 57 (4), 222-228 .

174. W. Nopcharoenkul, P. Netsakulnee, O. Pinyakong, Diesel oil removal by immobilized Pseudoxanthomonas sp. RN402, Biodegradation, 2013, 24,387–397.

175. M. Hazaimeh, S.A. Mutalib, P.S. Abdullah, W.K. Kee, S. Surif, Enhanced crude oil hydrocarbon degradation by self-immobilized bacterial consortium culture on sawdust and oil palm empty fruit bunch, Ann. Microbiol., 2014, 64 (4), 1769-1777.

176. E.A. Podorozhko, V.I. Lozinsky, I.B. Ivshina, M.S. Kuyukina, A.B. Krivorutchko,

J.C. Philp, et al., Hydrophobised sawdust as a carrier for immobilisation of the hydrocarbon-oxidizing bacterium Rhodococcus ruber, Bioresour. Technol., 2008, 99 (6), 2001-2008.

177. S.J. Varjani, D.P. Rana, A.K. Jain, S. Bateja, V.N. Upasani, Synergistic ex-situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sitesof Gujarat, India, Int. Biodeterior. Biodegrad., 2015, 103, 116-124.

178. A.S. Roy, R. Baruah, M. Borah, A.K. Singh, H.P.D. Boruah, N. Saikia, M. Deka, N. Dutta, T.C. Bora, Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study, Int. Biodeterior. Biodegrad., 2014, 94, 79-89.


PHỤ LỤC

Phụ lục 1. Khả năng tạo màng sinh học của các chủng dựa trên bắt giữ tím tinh thể của màng sinh học

Phụ lục 2 Sắc kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi 1


Phụ lục 2 Sắc kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi 2


Phụ lục 2 Sắc kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi 3


Phụ lục 2 Sắc kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi 4


Phụ lục 2: Sắc kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi cấy sau 14 ngày


Kí đồ về hàm lượng toluene còn lại trong các mẫu dịch nuôi cấy sau 14 ngày 5

Xem tất cả 144 trang.

Ngày đăng: 24/02/2023
Trang chủ Tài liệu miễn phí