36. S. Kahkashan, X. Wang, M. Ya, J. Chen, Y. Wu, Y. Cai, M. Saleem, A. Inam, J. Aftab, Evaluation of marine sediment contamination by polycyclic aromatic hydrocarbons along the Karachi coast, Pakistan, 11 years after the Tasman Spirit oil spill, Chemosphere, 2019, 233, 652-659.
37. A. Ferguson, H. Solo-Gabriele, K. Mena, Assessment for oil spill chemicals: Current knowledge, data gaps, and uncertainties addressing human physical health risk, Mar. Pollut. Bull., 2020, 150, 110746.
38. N. Afshar-Mohajer, M.A. Fox, K. Koehler, The human health risk estimation of inhaled oil spill emissions with and without adding dispersant, Sci. Total Environ., 2019, 654, 924-932.
39. A.L. Rung, E. Oral, E. Fontham,D.J. Harrington, E.J. Trapido & E.S. Peters, The Long-Term Effects of the Deepwater Horizon Oil Spill on Women's Depression and Mental Distress, Disaster medicine and public health preparedness, 2019, 13(2), 183-190.
40. J. Krishnamurthy, L.S. Engel, L. Wang, E.G. Schwartz, K. Christenbury, B. Kondrup, J. Barrett, J.A. Rusiecki, Neurological symptoms associated with oil spill response exposures: Results from the Deepwater Horizon Oil Spill Coast Guard Cohort Study, Environ. Int., 2019, 131, 104963.
41. A. J. L. Quist, D. S. Rohlman, R. K. Kwok, P. A. Stewart, M. R. Stenzel, A. Blair,
A. K. Miller, M. D. Curry, D. P. Sandler, L. S. Engel, Deepwater Horizon oil spill exposures and neurobehavioral function in GuLF study participants, Environ. Res., 2019, 179, 108834.
42. E.V. Sedusova, I.V. May and S.V. Kleyn, To the problem of the natural environment quality in the oil storage and transshipment facilities zones of influence, IOP Conf. Ser.: Earth Environ. Sci., 2020, 548 (6), 062088.
43. T.E. Bidleman, M.D. Walla, R. Roura, E. Carr, S. Schmidt, Organochlorine pesticides in the atmosphere of the southern ocean and Antarctica, January – March, 1990, Mar. Pollut. Bull., 1993, 26 (5), 258-262.
Có thể bạn quan tâm!
- Hiệu Suất Phân Huỷ Pah Bởi Các Loại Màng Sinh Học Khác Nhau
- Sắc Ký Đồ Phân Tích Thành Phần Dầu Thô Còn Lại Sau 14 Ngày Trong Thí Nghiệm Phân Huỷ Dầu Bằng Msh Đơn Chủng Vktqh
- J.f. Imhoff, H.g. Trueper, Purple Non-Sulfur Bacteria (Rhodospirillaceae Pfening And Trueper 197, 17Al), In: Staley Jt Bm, Pfening N, Holt Jg (Eds.). Bergey’ Manual Of Systematic Bacteriology,
- Nghiên cứu khả năng phân hủy hydrocarbon dầu mỏ của một số chủng vi khuẩn tía quang hợp tạo màng sinh học phân lập tại Việt Nam - 16
- Nghiên cứu khả năng phân hủy hydrocarbon dầu mỏ của một số chủng vi khuẩn tía quang hợp tạo màng sinh học phân lập tại Việt Nam - 17
Xem toàn bộ 144 trang tài liệu này.
44. L. Yu, M. Han, F. He, A review of treating oily wastewater, Arab. J. Chem., 2017, 10 (2), S1913 – S1922.
45. V. Todoroviê, Acute phenol poisoning, Medicinski Pregled, 2003, 56, 37-41.
46. J. Michałowicz, W. Duda, Phenols – Sources and Toxicity, Pol. J. Environ. Stud., 2007, 16 (3), 347-362.
47. S. Wasi, S. Tabrez, M. Ahmad, Toxicological effect of major environmental pollutants: An overview, Environ. Monit. Assess., 2013, 185, 2585–2593.
48. A.A. Gami, M.Y. Shukor, K.A. Khalil, F.A. Dahalan, A. Khalid, S.A Ahmad, Phenol and phenolic compounds toxicity, J. Environ. Microbiol. Toxicol., 2014, 2(1), 11-23.
49. M. Kumari, J. Abraham, Biodegradation of diesel oil using yeast Rhodosporidium toruloides, Res. J. Environ. Toxicol., 2011, 5(6), 369-377.
50. Quy chuẩn kỹ thuật quốc gia về chất lượng nước mặt, QCVN 08-MT:2015/BTNMT do Tổ soạn thảo quy chuẩn kỹ thuật quốc gia về chất lượng nước biên soạn.
51. US Department of health and human services, Toxicological profile for polycyclic aromatic hydrocarbons, Public Health Service – Agency for toxic substances and disease registy, 1995.
52. Lại Thuý Hiền, Giáo trình sau đại học Vi sinh vật dầu mỏ, 2011.
53. S. Patel, A. Homaei, S. Patil, A. Daverey, Microbial biosurfactants for oil spill remediation: pitfalls and potentials, App. Microbiol. Biotechnol., 2019, 103 (1), 27- 37.
54. S.J. Varjani, V.N. Upasani, Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514, Bioresour. Technol., 2016, 222, 195-201.
55. S.J. Varjni, Microbial degradation of petroleum hydrocarbons, Bioresour. Technol., 2017, 223, 277-286.
56. B. Bhushan, Bioinspired oil-water separation approaches for oil spill clean-up and water purification, Philosophical Transactions of the Royal Society A, 2019, 377 (2150), 20190120.
57. S.D. Lima, A.F. Oliveira, R. Golin, V.C.P. Lopes, D.S. Caixeta, Z.M. Lima, E.B. Morais, Isolation and characterization of hydrocarbon-degrading bacteria from gas station leaking-contaminated groundwater in the Southern Amazon, Brazil, Braz. J. Biol., 2020, 80 (2), 354-361.
58. M. Wu, W.A. Dick, W. Li, X. Wang, Q. Yang, T. Wang, L. Xu, M. Zhang, L. Chen,
Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial
community in a petroleum-contaminated soil, Int. Biodeterior. Biodegrad., 2016, 107, 158-164.
59. R.J. Brooijmans, M.I. Pastink, R.J. Siezen, R.J. Brooijmans, M.I. Pastink, R.J. Siezen, Hydrocarbon-degrading bacteria: the oil-spill clean-up crew, Microb. Biotechnol., 2009, 2 (6), 587-594.
60. A. Marietou, R. Chastain, F. Beulig, A. Scoma, T.C. Hazen, D.H. Bartlett, The Effect of Hydrostatic Pressure on Enrichments of Hydrocarbon Degrading Microbes From the Gulf of Mexico Following the Deepwater Horizon Oil Spill, Front. Microbiol., 2018, 9, 808.
61. D. Ramirez, L. Vega-Alvarado, B. Taboada, A. Estradas-Romero, L. Soto, K. Juarez, Bacterial diversity in surface sediments from the continental shelf and slope of the North West gulf of Mexico and the presence of hydrocarbon degrading bacteria, Mar. Pollut. Bull., 2020, 150, 110590.
62. R.M.M. Abed, J. Al-Sabahi, F. Al-Maqrashi, A. Al-Habsi, M. Al-Hinaia, Characterization of hydrocarbon-degrading bacteria isolated from oil- contaminated sediments in the Sultanate of Oman and evaluation of bioaugmentation and biostimulation approaches in microcosm experiments, Int. Biodeterior. Biodegrad., 2014, 89, 58-66.
63. N. Swissa, Y. Nitzan, Y. Anker, R. Cahan, Biofilter based on a biofilm immobilized on geo-textile sheets for rapid atrazine biodegradation, Int. Biodeterior. Biodegrad., 2015, 105, 146–152.
64. M. Gomila, A. Busquets, E. García-Valdés, E. Michael, R. Cahan, Y. Nitzan, J. Lalucat, Draft Genome Sequence of the Toluene-Degrading Pseudomonas stutzeri Strain ST-9, Genome Announc., 2015, 3 (3), e00567-15.
65. E. Michael, M. Gomila, J. Lalucat, Y. Nitzan, I. Pechatnikov, R. Cahan, Proteomic Assessment of the Expression of Genes Related to Toluene Catabolism and Porin Synthesis in Pseudomonas stutzeri ST-9, J. Proteome Res., 2017, 16 (4), 1683–1692.
66. H. Wilkes, J. Schwarzbauer (auth.), K.N. Timmis (eds.), Handbook of Hydrocarbon and Lipid Microbiology, Springer-Verlag Berlin Heidelberg, 2010.
67. A. Hougardy, B.J. Tindall and J.H. Klemme, Rhodopseudomonas rhenobacensis sp. nov., a new nitrate-reducing purple non-sulfur bacterium, Int. J. Syst. Evol. Microbiol., 2000, 50 (3), 985-992.
68. C.M. VanDrisse, J.C. Escalante-Semerena Small-Molecule Acetylation Controls the Degradation of Benzoate and Photosynthesis in Rhodopseudomonas palustris, MBio, 2018, 9 (5), e01895-18.
69. K. Yamanaka, M. Moriyama, R. Minoshima and Y. Tsuyuki, Isolation and Characterization of a methanol-utilizing phototropic bacterium, Rhodopseudomonas acidophila M402 and its growth on vanillin derivatives, Agric. Biol. Chem., 1983, 47 (6), 1257–1267.
70. G.E. Wright and M.T. Madigan, Photocatabolism of aromatic compounds by the phototrophic purple bacterium Rhodomicrobium vannielii, Appl. Environ. Microbiol., 1991, 57 (7), 2069–2073.
71. K. Zengler, J. Heider, R. Rossello-Mora and F. Widdel, Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis, Arch. Microbiol., 1999, 172 (4), 204–212.
72. C. V. Ramana, C. Sasikala, K. Arunasri, P. Anil Kumar, T.N. Srinivas, S. Shivaji,
P. Gupta, J. Suling and J. F. Imhoff, Rubrivivax benzoatilyticus sp. nov., an aromatic, hydrocarbon-degrading purple betaproteobacterium. Int. J. Syst. Evol. Microbiol., 2006, 56: 2157–2164.
73. J. Gibson & C.S. Harwood, Degradation of aromatic compounds by nonsulfur purple bacteria, Anoxygenic photosynthetic bacteria, 1995, 991– 1003.
74. M.T. Madigan and H. Gest, Selective enrichment and isolation of Rhodopseudomonas palustris using trans-cinnamic acid as a sole carbon source, FEMS Microbiol. Ecol., 1988, 4 (1), 53-58.
75. B. J. van der Woude, M. de Boer, N.M. van der Put, F. M. van der Geld, R.A. Prins and J.C. Gottschal, Anaerobic degradation of halogenated benzoic acids by photoheterotrphic bacteria, FEMS Microbiol. Lett., 1994, 119 (1-2), 199–207.
76. U. Noh, S. Heck, F. Giffhorn and G.W. Kohring, Phototrophic transformation of phenol to 4-hydroxyphenylacetate by Rhodopseudomonas palustris, Appl. Microbiol. Biotechnol., 2002, 58 (6), 830–835.
77. Y. Oda, Y.P. de Vries, L.J. Forney and J.C. Gottschal, Acquisition of the ability for Rhodopseudomonas palustris to degrade chlorinated benzoic acids as the sole carbon source, FEMS Microbiol. Ecol., 2001, 38 (2-3), 133-139.
78. Y. Oda, W.G. Meijer, J. L. Gibson, J.C. Gottschal, L.J. Forney, Analysis of diversity among 3-cholrobenzoate-degrading strains of Rhodopseudomonas palutris, Microb. Ecol., 2004, 47 (1), 68-79.
79. Đinh Thị Thu Hằng, Nghiên cứu sự phân hủy sinh học hợp chất hydrocarbon mạch vòng ở một số vi khuẩn quang hợp tía phân lập tại Việt Nam, Luận án tiến sỹ sinh học, Viện Công nghệ sinh học-Viện Hàn lâm Khoa học và Công nghệ Việt Nam, 2007.
80. D.S. Sampaio, J.R.B. Almeida, H.E. de Jesus, A.S. Rosado, L. Seldin, D. Jurelevicius, Distribution of Anaerobic Hydrocarbon-Degrading Bacteria in Soils from King George Island, Maritime Antarctica, Microb. Ecol., 2017, 74 (4), 810- 820.
81. K. Venkidusamy and M. Megharaj, Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments, Front. Microbiol., 2016, 7, 1017.
82. W. Fritsche and M. Hofrichter, Aerobic degradation by microorganisms, Biotechnology set, 2001, 144-167.
83. A.I. Al-Turki, Microbial Polycyclic Aromatic Hydrocarbons Degradation in Soil, Res. J. Environ. Toxicol., 2009, 3 (1), 1-8.
84. S. Labana, M. Kapur, D.K. Malik, D. Prakash, R.K. Jain, Diversity, biodegradation and bioremediation of polycyclic aromatic hydrocarbons, Environmental bioremediation technologies, 2007, 409-443.
85. D. Berry, T. Gutierrez, Evaluating the detection of hydrocarbon-degrading bacteria in 16S rRNA gene sequencing surveys, Front. Microbiol., 2017, 8, 896.
86. B. Kumari, S.N. Singh & D.P. Singh, Induced degradation of crude oil mediated bymicrobial augmentation and bulking agents, Int. J. Environ. Sci. Technol., 2016, 13(4), 1029–1042.
87. S. Rabodonirina, R. Rasolomampianina, F. Krier, D. Drider, D. Merhaby, S. Net, B. Ouddane, Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites, J. Environ. management, 2019, 232, 1-7.
88. R. Chakraborty and J.D. Coates, Anaerobic degradation of monoaromatic hydrocarbons, Appl. Microbiol. Biotechnol., 2004, 64 (4), 437-446.
89. J. Gibson and C.S. Harwood, Metabolic diversity in aromatic compound utilization by anaerobic microbes, Ann. Rev. Microbiol., 2002, 56 (1), 345-369.
90. J. Heider and G. Fuchs, Microbial anaerobic aromatic metabolism, Anaerobe, 1997a, 3 (1), 1-22.
91. J. Heider and G. Fuchs, Anaerobic metabolism of aromatic compounds, Eur. J Biochem., 1997b, 243 (3), 577-596.
92. U. Altenschmidt, B. Oswald and G. Fuchs, Purification and characterisation of benzoate-coenzyme A ligase and 2-aminobenzoate-coenzyme A ligases from denitrifying Pseudomonas sp, J. Bacteriol., 1991, 173 (17), 5494-5501.
93. J. Zhou, M.R. Fries, J.C. Chee-Sanford and J.M. Tiedje, Phylogenetic analysis of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcustolulyticus sp. nov, Int. J. Syst. Evol. Microbiol., 1995, 45 (3), 500-506.
94. D.R. Lovley, S.J. Giovannoni, D.C. White, J.E. Champine, E.J.P. Phillips, Y.A. Gorby and S. Goodwin, Geobactermetallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals, Arch. Microbiol., 1993, 159 (4), 336-344.
95. J.D. Coates, E.J.P. Phillips, D.J. Lonergan, H.Y. Jenter and D.R. Lovley (1996), Isolation of Geobacter species from diverse sedimentary environments. Appl. Environ. Microbiol., 1996, 62 (5), 1531-1536.
96. S. Schnell and B. Schink, Anaerobic aniline degradation via reductive deamination of 4-aminobenzoyl-CoA in Desulfobacterium anilini, Arch. Microbiol., 1991, 155 (2), 183-190.
97. N. Gorny and B. Schink, Anaerobic degradation of catechol by Desulfobacterium sp. strain Cat2 proceeds via carboxylation to protocatechuate, Appl. Environ. Microbiol., 1994, 60 (9), 3396-3400.
98. L.R. Krumholz, R.L. Crawford, M.E. Hemling and M.P. Bryant, Metabolism of gallate and phloroglucinol in Eubacteriumoxidoreducens via 3-hydroxy-5- oxohexanoate, J. Bacteriol., 1987, 169 (5), 1886-1890.
99. C. Kluge, A. Tschech and G. Fuchs, Anaerobic metabolism of resorcylic acids (m- dihydroxybenzoic acids) and resorcinol (1,3-benzenediol) in a fermenting and in a denitrifying bacterium, Arch. Microbiol., 1990, 155 (1), 68-74.
100. A. Brune and B. Schink, Phloroglucinol pathway in the strickly anaerobic Pelobacter acidigallici: fermentation of trihydroxybenzenes to acetate via triacetic acid, Arch. Microbiol., 1992, 157 (5), 417-424.
101. B. Schink, Energetics of syntrophic cooperation in methanogenic degradation, Microbiol. Mol. Biol. Rev., 1997, 61 (2), 262-280.
102. P. Khanna, B. Rajkumar and N. Jothikumar, Anoxygenic degradation of aromatic substances by Rhodopseudomonas palustris, Curr. Microbiol., 1992, 25(2), 63-67.
103. M.T. Madigan, D.O. Jung and S.M. Resnick, Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound Hippurate, Arch. Microbiol., 2001, 175 (6), 462-465.
104. Y. Oda, S.K. Samanta, F.E. Rey, L. Wu, X. Liu, T. Yan, J. Zhou, C.S. Harwood, Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris, J. Bacteriol., 2005, 187 (22), 7784-7794.
105. R. Kotoky, S. Das, L.P. Singha, P. Pandey, K.M. Singha, Biodegradation of Benzo(a)pyrene by biofilm forming and plant growth promoting Acinetobacter sp. Strain, Environmental Technology & Innovation, 2017, 8, 256-268.
106. A.R. Johnsen, L.Y. Wick, and H. Harms, Principles of microbial PAH degradation in soil, Environ. Pollut., 2005, 133 (1), 71-84.
107. G.A. O’Toole, H.B. Kaplan & R. Kolter, Biofilm formation as microbial development, Annu. Rev. Microbiol., 2000, 54 (1), 49–79.
108. K.N. Nisha, V. Devi, P. Varalakshmi, B. Ashokkumar, Biodegradation and utilization of dimethylformamide by biofilm forming paracoccus sp. strains Mku1 and Mku2, Bioresour. Technol., 2015, 188, 9-13.
109. Y. Shao, Y. Wang, X. Wu, X. Xu, S. Kong, L. Tong, Z Jiang & B. Li, Biodegradation of PAHs by acinetobacter isolated from karst groundwater in a coal-mining area, Environ. Earth Sci., 2015, 73 (11), 7479-7488.
110. Y. Zhang, F. Wang, X. Zhu, J. Zeng, Q. Zhao, X. Jiang, Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation, Bioresour. Technol., 2015, 193, 274-280.
111. J. Wimpenny, W. Manz, U. Szewzyk, Heterogeneity in biofilm, FEMS Microbiol. Rev., 2000, 24 (5), 661–671.
112. D. Dasgupta, R. Ghosh and T.K. Sengupta, Biofilm-mediated enhanced crude oil degradation by newly isolated pseudomonas species, ISRN Biotechnol., 2013, 1-13.
113. P.M. Tribelli, C.D. Martino, N.I. López & L.J.R. Iustman, Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis, Biodegradation, 2012, 23 (5), 645–651.
114. M. Nie, H. Nie, M. He, Y. Lin, L. Wang, P. Jin, S.Y. Zhang, Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale, J. Environ. Management, 2016, 173, 34-40.
115. M. Omarova, L.T. Swientoniewski, I.K.M. Tsengam, D.A. Blake, V. John, A. McCormick, G.D. Bothun, S.R. Raghavan and A. Bose, Biofilm Formation by Hydrocarbon-Degrading Marine Bacteria and Its Effects on Oil Dispersion, ACS Sustainable Chem. Eng., 2017, 7 (17), 14490-14499.
116. F. Morgan-Sagastumea, S. Jacobssonab, L.E. Olsson, M. Carlssona, M. Gyllenhammar, I.S. Horváthb, Anaerobic treatment of oil-contaminated wastewater with methane production using anaerobic moving bed biofilm reactors, Water Res., 2019, 163, 114851.
117. Lê Thị Nhi Công, Cung Thị Ngọc Mai, Vũ Thị Thanh, Đỗ Thị Tố Uyên, Nghiêm Ngọc Minh, Nghiên cứu khả năng phân hủy các thành phần hydrocarbon có trong nước thải nhiễm dầu của màng sinh học từ vi sinh vật gắn trên giá thể xơ dừa, Tạp chí Khoa học công nghệ Việt Nam, 2016, 6, 48-53.
118. Lê Thị Nhi Công, Cung Thị Ngọc Mai, Nghiêm Ngọc Minh, Một số yếu tố sinh lý sinh hóa ảnh hưởng tới khả năng tạo màng sinh học chủng nấm men Trichosporon asahii QN-B1 phân hủy phenol phân lập từ Hạ Long, Quảng Ninh, Tạp chí Sinh học, 2013, 35(3se), 106-113.
119. Cung Thi Ngoc Mai, Nghiên cứu sự phân hủy sinh học hợp chất vòng thơm của các chủng vi sinh vật tạo màng sinh học phân lập tại một số địa điểm ô nhiễm dầu ở Việt Nam, Luận án tiến sỹ sinh học, Viện Công nghệ sinh học-Viện Hàn lâm Khoa học và Công nghệ Việt Nam, 2019.
120. M.J. Alessandrello, E.A. Parellada, M.S.J. Tomás, A. Neske A, D.L. Vullo and
M.A. Ferrero, Polycyclic aromatic hydrocarbons removal by immobilized bacterial