Nghiên cứu chế tạo và ứng dụng chất lỏng tản nhiệt chứa thành phần ống nanô cácbon trong quản lý nhiệt cho vệ tinh - 17

114


27. K.A. Kumar, S.N. Kulkarni, L. Bharath, “Synthesis, Properties and Characterization of Nanofluid – A Critical Review”, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 10 (9), 2021.

28. R.S. Ruoff, D.C. Lorents, “Mechanical and thermal properties of carbon nanotubes”, Carbon, Volume 33(7), 925-930, 1995.

29. M.A. Sheremet, “Applications of Nanofluids”, Nanomaterials 2021, 11, 1716, 2021.

30. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, Vol. 78(6), 718–720, 2001.

31. Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, “A review on development of nanofluid preparation and characterization”, Powder Technology, Volume 196(2), 89–101, 2009.

32. C.H. Lo, T.T. Tsung, L.C. Chen, “Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS)”, Journal of Crystal Growth, vol. 277, no. 1–4, pp. 636–642, 2005.

33. C.H. Lo, T.T. Tsung, L.C. Chen, C.H. Su, H.M. Lin, “Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS)”, Journal of Nanoparticle Research, vol. 7, no. 2-3, pp. 313–320, 2005.

34. H.T. Zhu, Y.S. Lin, Y.S. Yin, “A novel one-step chemical method for preparation of copper nanofluids”, Journal of Colloid and Interface Science, vol. 277, no. 1, pp. 100–103, 2004.

Có thể bạn quan tâm!

Xem toàn bộ 149 trang tài liệu này.

35. A.K. Jagadeesan, K. Thangavelu, V. Dhananjeyan, “Carbon Nanotubes: Synthesis, Properties and Applications, 21st Century Surface Science” - a Handbook, 2020.

115

Nghiên cứu chế tạo và ứng dụng chất lỏng tản nhiệt chứa thành phần ống nanô cácbon trong quản lý nhiệt cho vệ tinh - 17


36. H.Q. Xie, H. Lee, W. Youn, M. Choi, “Nanofluids containing multi-walled carbon nanotubes and their enhanced thermal conductivities”. J. Appl. Phys., 94, 4971–4975, 2003.

37. L.Q. Jiang, L. Gao, J. Sun, “Production of aqueous colloidal dispersions of carbon nanotubes”, J. Colloid Interface Sci., 260, 89–94, 2003

38. L. Chen, H. Xie, Y. Li, W. Yu, “Nano fluids containing carbon nanotubes treated by mechanochemical reaction”, Thermochimica Acta 477, 21–24, 2008.

39. N. Singha, G. Chanda, S. Kanagaraja, “Investigation of Thermal Conductivity and Viscosity of Carbon Nanotubes–Ethylene Glycol Nanofluids”, Heat Transfer Engineering, Volume 33(9), 2012.

40. A. Ghadimi, R. Saidur, H.S.C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions”, International Journal of Heat and Mass Transfer, 54, 4051–4068, 2011.

41. H. Xie, W. Yu, W. Chen, “MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles”, Journal of Experimental Nanoscience, Volume 5(5), 463–472, 2010.

42. M.J. Kao, C.H. Lo, T.T. Tsung, Y.Y. Wu, C.S. Jwo, H.M. Lin, “Copper- oxide brake nanofluid manufactured using arc-submerged nanoparticle synthesis system,” Journal of Alloys and Compounds, Volume 434-435, 672–674, 2007.

43. G. Cheraghian, “Nanoparticles in drilling fluid: A review of the state-of-the- art”, Journal of Materials Research and Technology Volume 13, 737-753, 2021.

44. J. Routbort và cộng sự, Argonne National Lab, Michellin North America, St. Gobain Corp., 2009.

45. Z.H. Han, F.Y. Cao, B. Yang, “Synthesis and thermal characterization of phase-changeable indium/polyalphaolefin nanofluids,” Applied Physics Letters, vol. 92(24), 3, 2008.

116


46. S.J. Kim, I.C. Bang, J. Buongiorno, L.W. Hu, “Study of pool boiling and critical heat flux enhancement in nanofluids,” Bulletin of the Polish Academy of Sciences—Technical Sciences, vol. 55(2), 211–216, 2007.

47. A.R.I. Ali, B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application”. SN Appl. Sci. 2, 1636, 2020.

48. A.R. Prasad, S. Singh, H. Nagar, “A review on Nanofluids: Properties and applications”, International journal of advanced research and innovative ideas in Education, Vol 3(3), 70-76, 2017.

49. Y. Sawant, K. Pathare, R. Patel, P. Choughule. “NANOFLUIDS WITH RECENT APPLICATION & FUTURE TRENDS”, International Journal of Innovations in Engineering Research and Technology, 8(06), 458–468, 2021.

50. W. Abbas, M.M. Magdy, “Heat and Mass Transfer Analysis of Nanofluid Flow Based on Cu, Al2O3, and TiO2 over a Moving Rotating Plate and Impact of Various Nanoparticle Shapes”, Mathematical Problems in Engineering, Volume 2020, 9606382, 2020.

51. S. Almurtaji, N. Ali, J.A. Teixeira, A. Addali, “Effect of Multi-Walled Carbon Nanotubes-Based Nanofluids on Marine Gas Turbine Intercooler Performance”, Nanomaterials 2021, 11, 2300, 2021.

52. M.C. Mbambo, S. Khamlich, T. Khamliche, M.K. Moodley, K. Kaviyarasu, I.G. Madiba, M.J. Madito, M. Khenfouch, J. Kennedy, M. Henini, E. Manikandan, M. Maaza, “Remarkable thermal conductivity enhancement in Ag—decorated graphene nanocomposites based nanofluid by laser liquid solid interaction in ethylene glycol”, Sci Rep 10, 10982, 2020.

53. D.P. Kulkarni, D.K. Das, R.S. Vajjha, “Application of Nanofluids in Heating Buildings and Reducing Pollution”, Appl. Energ. 86, 2566–2573, 2009.

117


54. A. Sednin, A. Mukhin, B. Balakin, “Use of vertical geothermal heat exchanger with nanofluid for heat supply systems”, E3S Web Conf., 288, 01089, 2021.

55. E.C. Okonkwo, I. Wole-Osho, I.W. Almanassra, Y.M. Abdullatif, T. Al- Ansari, “An updated review of nanofluids in various heat transfer devices”. J Therm Anal Calorim 145, 2817–2872, 2021.

56. M. Muneeshwaran, G. Srinivasan, P. Muthukumar, Chi-Chuan Wang, “Role of hybrid-nanofluid in heat transfer enhancement – A review”, International Communications in Heat and Mass Transfer, Volume 125, 105341, 2021.

57. O. Esmaeili, M. Karami, S. Delfani, “Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid”, Volume 44(7), 5527-5544, 2020.

58. S.K. Verma, A.K. Tiwari, D.S. Chauhan, “Performance augmentation in flat plate solar collector using MgO/water nanofluid”, Energy Conversion and Management, Volume 124, 607-617, 2016.

59. A.K. Maini, V. Agrawal, “Satellite technology: Principles and Applications”, Third Edition, Wiley, 2014.

60. J. Miao, Q. Zhong, Q. Zhao, X. Zhao, “Spacecraft Thermal Control Technologies”, Springer, 1st edition 2021.

61. Y. Wei, L. Changhong, F. Shoushan, “Advances of CNT-based systems in thermal management”, Nano Research. 14, 2021.

62. A.K. Jagadeesan, K. Thangavelu, V. Dhananjeyan, “Carbon Nanotubes: Synthesis, Properties and Applications, 21st Century Surface Science” - a Handbook, 2020.

63. K. Brzóska, B. Jóźwiak, A. Golba, M. Dzida, S. Boncel, “Thermophysical Properties of Nanofluids Composed of Ethylene Glycol and Long Multi- Walled Carbon Nanotubes”. Fluids 2020, 5, 241, 2020.


64. P.R. Mashaeia, M. Shahryarib, S. Madani, "Analytical study of multiple evaporator heat pipe with nanofluid; A smart material for satellite equipment cooling application", Aerospace Science and Technology, Volume 59, 112–121, 2016.

65. J.R. Wertz, D.F. Everett, J.J. Puschell, “Space Mission Engineering: The New SMAD”, 2011.

66. D.G. Gilmore, "Spacecraft Thermal Control Handbook. Vol. 1: Fundamental Technologies”, The Aerospace Corporation Press, California, (2002).

67. R.C. van Benthem, H.J. van Gerner, J. van Es, A. van Vliet, P. van Put Elst, D.J. Schwaller, “Valve-less Mechanically Pumped Fluid Loop (MPFL) using East and West Panels of a Large Telecommunication Satellite as Radiator”, 45th International Conference on Environmental Systems, Bellevue, Washington, 12-16 July 2015.

68. R. Thorslund, A. Bjorneklett, M. Antelius, T. Tjiptahardja, T. Huens, A. Scommegna, A. Walker, “Development of an Engineering Model of a monophasic Electro Hydro Dynamic (EHD) pumped fluid loop within the frame of the NEOSAT pre-development activities”, 46th International Conference on Environmental Systems, Vienna, Austria, 10-14 July 2016.

69. J.X. Wang, Y.Z. Li, H.S. Zhan, S.N. Wang, Y.H Liang, W. Guo, Y. Liu,

S.P. Tian, “A highly self-adaptive cold plate for the single-phase mechanically pumped fluid loop for spacecraft thermal management”, Energy Conversion and Management, Volume 111, 57-66, 2016.

70. V.S. Jasvanth, V. Jaikumar, “Design and testing of an ammonia loop heat pipe”, Applied Thermal Engineering 111, 1655-1663, 2017.

71. N. Czaplicka, A. Grzegórska, J. Wajs, J. Sobczak, A. Rogala, “Promising Nanoparticle-Based Heat Transfer Fluids—Environmental and Techno- Economic Analysis Compared to Conventional Fluids”, Int. J. Mol. Sci, 22, 9201, 2021.


72. S.S. Hassani, A. Amrollahi, A. Rashidia, M. Soleymani, S. Rayatdoost, “The effect of nanoparticles on the heat transfer properties of drilling fluids”, Journal of Petroleum Science and Engineering Volume 146, 183- 190, 2016.

73. T. Rasheed, T. Hussain, M.T. Anwar, J. Ali, K. Rizwan, M. Bilal, F.H. Alhamman, N. Alwadai, A.S. Alumuslem, “Hybrid Nanofluids as Renewable and Sustainable Colloidal Suspensions for Potential Photovoltaic, Thermal and Solar Energy Applications, Frontiers in Chemistry”, Volume 9, 582, 2021.

74. S.M. Mamand, “Thermal Conductivity Calculations for Nanoparticles Embedded in a Base Fluid”. Appl. Sci., 11, 1459, 2021.

75. K. Varshney, "Carbon Nanotubes: A Review on Synthesis, Properties and Applications", International Journal of Engineering Research and General Science Volume 2(4), June-July 2014.

76. C. Choi, M. Jung, “Extreme pressure properties of multi-component oil- based nanofluids”, J Nanosci Nanotechnol. 2012 Apr;12(4):3237-41, 2021.

77. M.M. Bhatti, “Recent Trends in Nanofluids”, Inventions 2021, 6, 39, 2021.


78. M. Xing, J. Yu, R. Wang, “Experimental study on the thermal conductivity en- hancement of water based nanofluids using different types of carbon nanotubes”, Int. J. Heat Mass Transf. 88, 609–616, 2015.

79. R. Walvekar, I.A. Faris, M. Khalid, “Thermal conductivity of carbon nanotube na- nofluid-experimental and theoretical study”, Heat Transf. Res. 41(2), 145–163, 2012.

80. M.A. Sabiha, R.M. Mostafizur, R. Saidur, S. Mekhilef, “Experimental investigation on thermo physical properties of single walled carbon nanotube nanofluids”, Int. J. Heat Mass Transf. 93, 862–871, 2016.

81. T.X. Phuoc, M. Massoudi, R.H. Chen, “Viscosity and thermal conductivity of nano- fluids containing multi-walled carbon nanotubes stabilized by chitosan”, Int. J. Therm. Sci. 50 (1), 12–18, 2011.

120


82. P. Estellé, S. Halelfadl, T. Maré, “Thermal conductivity of Cnt water based nano- fluids: experimental trends and models overview”, J. Therm. Eng. 1 (2), 381–390, 2015.

83. A. Nasiri, M. Shariaty-Niasar, A.M. Rashidi, R. Khodafarin, “Effect of CNT structures on thermal conductivity and stability of nanofluid”, Int. J. Heat Mass Transf. 55 (5–6), 1529–1535, 2012.

84. S. Naddaf, Z. Heris, “Experimental study on thermal conductivity and elec- trical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes”, Int. Commun. Heat Mass Transf. 95, 116–122, 2018.

85. S.P. Venkatesan, J. Hemanandh, “Experimental investigation on convective heat transfer coefficient of water/ethylene glycol-carbon nanotube nanofluids”, Int. J. Ambient Energy, 1–3, 2018

86. D. Bohne, S. Fischer, E. Obermeier, “Thermal, Conductivity, Density, Viscosity, and Prandtl-Numbers of Ethylene Glycol-Water Mixtures ” Volume 742, 739–742, 1984.

87. P. Wang, J.J. Kosinski, A. Anderko, R.D. Springer, M.M. Lencka, J. Liu, "Ethylene Glycol and Its Mixtures with Water and Electrolytes: Thermodynamic and Transport Properties", Ind. Eng. Chem. Res. 2013, Volume 52(45), 15968–15987, 2013.

88. O. Keklikcioglu, T. Dagdevir, V.Ozceyhan, “Second law analysis of a mixture of ethylene glycol/water flow in modified heat exchanger tube by passive heat transfer enhancement technique”, J Therm Anal Calorim 140, 1307–1320, 2020.

89. X. Li, C. Zou, “Thermo-physical properties of water and ethylene glycol mixture based SiC nanofluids: An experimental investigation”, International Journal of Heat and Mass Transfer, Volume 101, Pages 412- 417, October 2016.


90. H. Sandhu, D. Gangacharyulu, “An experimental study on stability and some ther- mophysical properties of multiwalled carbon nanotubes with water–ethylene glycol mixtures”, Part. Sci. Technol., 1–8, 2016.

91. V. Kumaresan, R. Velraj, “Experimental investigation of the thermo- physical properties of water-ethylene glycol mixture based CNT nanofluids”, Thermochim. Acta 545, 180–186, 2012.

92. H.E. Patel, K.B. Anoop, T. Sundararajan, S.K. Das, “Model for thermal conductivity of CNT-nanofluids”, Bulletin of Materials Science 31 (3), 387–390, 2008.

93. M. Xing, J. Yu, R. Wang, “Experimental investigation and modelling on the thermal conductivity of CNTs based nanofluids”, Int. J. Therm. Sci. 104, 404–411, 2016.

94. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, Sarit

K. Das, “Model for Heat Conduction in Nanofluids,” Phys. Rev. Lett., Volume 93(14), 144301, 2004.

95. H.E. Patel, K.B. Anoop, T. Sundararajan, and S.K. Das, “Model for thermal conductivity of CNT-nanofluids,” Bull. Mater. Sci., Volume 31(3), 387–390, 2008.

96. Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim. H.S. Park, J.K. Lee, “Investigation on characteristics of thermal conductivity enhancement of nanofluids,” Curr. Appl. Phys., Volume 6, 1068–1071, 2006.

97. B.H. Thang, P.H. Khoi, and P.N. Minh, “A modified model for thermal conductivity of carbon nanotube-nanofluids,”, Physics of Fluids 27, 032002, 2015.

98. G. Wu, J. Yang, S. Ge, Y. Wang, M. Chen, Y. Chen, “Thermal conductivity measurement for carbon-nanotube suspensions with 3ω method,” Volume 61, 394–398, 2009.

Xem tất cả 149 trang.

Ngày đăng: 30/12/2022
Trang chủ Tài liệu miễn phí