Ho: All panels contain unit roots Number of panels = 679
Ha: At least one panel is stationary Number of periods = 6
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1358) P 2440.3078 0.0000
Inverse normal Z -25.2995 0.0000
Inverse logit t(3399) L* -23.2152 0.0000
Modified inv. chi-squared Pm 20.7676 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for GDP Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 679
Ha: At least one panel is stationary Number of periods = 6
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1358) P 1427.5060 0.0927
Inverse normal Z -10.0740 0.0000
Inverse logit t(3399) L* -8.9247 0.0000
Modified inv. chi-squared Pm 1.3337 0.0912
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for beta Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 678
Ha: At least one panel is stationary Avg. number of periods = 5.83
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1356) P 4673.1588 0.0000
Inverse normal Z -28.5176 0.0000
Inverse logit t(3364) L* -41.2925 0.0000
Modified inv. chi-squared Pm 63.6974 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for Risk Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 678
Ha: At least one panel is stationary Avg. number of periods = 5.83
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1356) P 3694.6771 0.0000
Inverse normal Z -18.5029 0.0000
Inverse logit t(3374) L* -27.8531 0.0000
Modified inv. chi-squared Pm 44.9082 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for SR Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 678
Ha: At least one panel is stationary Avg. number of periods = 5.83
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1356) P 2629.6505 0.0000
Inverse normal Z -21.6360 0.0000
Inverse logit t(3374) L* -23.0217 0.0000
Modified inv. chi-squared Pm 24.4571 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for ILLIQ Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 678
Ha: At least one panel is stationary Avg. number of periods = 5.83
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags Statistic p-value
Inverse chi-squared(1356) P 3359.5797 0.0000
Inverse normal Z -9.0853 0.0000
Inverse logit t(3359) L* -20.0516 0.0000
Modified inv. chi-squared Pm 38.4735 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
Fisher-type unit-root test for LM12 Based on augmented Dickey-Fuller tests
Ho: All panels contain unit roots Number of panels = 678
Ha: At least one panel is stationary Avg. number of periods = 5.83
AR parameter: Panel-specific Asymptotics: T -> Infinity Panel means: Included
Time trend: Not included
Drift term: Not included ADF regressions: 0 lags
Statistic p-value
Inverse chi-squared(1354) P 3551.3661 0.0000
Inverse normal Z -9.9328 0.0000
Inverse logit t(3319) L* -22.4074 0.0000
Modified inv. chi-squared Pm 42.2258 0.0000
P statistic requires number of panels to be finite.
Other statistics are suitable for finite or infinite number of panels.
2. Kiểm định lựa chọn phương pháp ước lượng
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance
Variables: fitted values of ILLIQ
chi2(1) = 44.01
Prob > chi2 = 0.0000
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance
Variables: fitted values of LM12
chi2(1) = 775.23
Prob > chi2 = 0.0000
Breusch and Pagan Lagrangian multiplier test for random effects
ILLIQ[MCT,t] = Xb + u[MCT] + e[MCT,t]
Estimated results:
Var sd = sqrt(Var | ||
ILLIQ | 11.17137 | 3.34236 |
e | .9965541 | .9982756 |
u | .5755179 | .7586289 |
Có thể bạn quan tâm!
- Nhân tố tác động đến tính thanh khoản của cổ phiếu niêm yết trên thị trường chứng khoán Việt Nam - 22
- Nhân tố tác động đến tính thanh khoản của cổ phiếu niêm yết trên thị trường chứng khoán Việt Nam - 23
- Nhân tố tác động đến tính thanh khoản của cổ phiếu niêm yết trên thị trường chứng khoán Việt Nam - 24
- Nhân tố tác động đến tính thanh khoản của cổ phiếu niêm yết trên thị trường chứng khoán Việt Nam - 26
Xem toàn bộ 215 trang tài liệu này.
)
Breusch and Pagan Lagrangian multiplier test for random effects
LM12[MCT,t] = Xb + u[MCT] + e[MCT,t]
Estimated results:
Var sd = sqrt(Var | ||
LM12 | 36.90356 | 6.07483 |
e | 12.56068 | 3.544104 |
u | 1.689307 | 1.299733 |
)
Kiểm định Hausman ILLIQ
Coefficients
(b) FE | (B) RE | (b-B) Difference | sqrt(diag(V_b-V_B)) S.E. | |
FreeFloat State Pcs TYPE 2 3 4 VSGR Size LnKLGD RATE GDP Risk SR | -.305856 | -.3726164 | .0667604 | .0567137 |
.3225965 | .4132013 | -.0906049 | .1028446 | |
-.9364938 | -1.18511 | .2486162 | .1312761 | |
-.204158 | -.1854926 | -.0186653 | .0263128 | |
.0399402 | .1678641 | -.1279239 | .0258197 | |
.1145283 | .2117491 | -.0972208 | .0267844 | |
-.6166677 | -.8060923 | .1894247 | .0592336 | |
-.7401627 | -.4858657 | -.254297 | .0345353 | |
-.7316247 | -.7634801 | .0318553 | .0111645 | |
26.584 | 28.04689 | -1.462889 | 1.361199 | |
35.16469 | 29.554 | 5.610688 | 1.6 | |
64.9011 | 66.29407 | -1.392977 | .8975799 | |
-.7443141 | -.911902 | .1675879 | .0425386 |
b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(13) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 89.94
Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)
Kiểm định Hausman LM12
Coefficients
(b) FE | (B) RE | (b-B) Difference | sqrt(diag(V_b-V_B)) S.E. | |
FreeFloat State Pcs TYPE 2 3 4 VSGR Size LnKLGD RATE GDP Risk SR | .4220762 | -.8600593 | 1.282135 | .2801379 |
-.2816066 | .4312225 | -.7128291 | .4543007 | |
.7335827 | .5285105 | .2050722 | .6473038 | |
-.116078 | -.3701347 | .2540568 | .1487015 | |
.3161347 | .2821655 | .0339692 | .1373923 | |
.450912 | .2830778 | .1678342 | .1457183 | |
1.564758 | 1.537565 | .0271931 | .3043893 | |
-.3889255 | -.2117035 | -.177222 | .1402665 | |
-1.022576 | -1.426764 | .4041876 | .0494113 | |
-26.90213 | -84.5433 | 57.64117 | 7.181545 | |
-133.0993 | -193.2497 | 60.15036 | 8.460689 | |
51.9173 | 69.86196 | -17.94465 | 4.668824 | |
-2.851489 | -4.105063 | 1.253574 | .2725221 |
b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg
Test: Ho: difference in coefficients not systematic
chi2(13) = (b-B)'[(V_b-V_B)^(-1)](b-B)
= 86.29
Prob>chi2 = 0.0000
(V_b-V_B is not positive definite)
3. Kiểm định đa cộng tuyến
VIF | 1/VIF | |
GDP | 5.25 | 0.190566 |
RATE | 5.04 | 0.198250 |
Size | 2.30 | 0.434538 |
LnKLGD | 2.17 | 0.460255 |
SR | 1.44 | 0.695704 |
FreeFloat | 1.32 | 0.757250 |
Risk | 1.23 | 0.810649 |
Pcs | 1.22 | 0.817118 |
State | 1.22 | 0.821940 |
VSGR | 1.10 | 0.910226 |
Mean VIF | 2.23 |
Hệ số VIF sau khi loại biến GDP
VIF | 1/VIF | |
Size | 2.29 | 0.436733 |
LnKLGD | 2.17 | 0.460532 |
FreeFloat | 1.32 | 0.757619 |
Risk | 1.23 | 0.814723 |
Pcs | 1.22 | 0.817519 |
State | 1.20 | 0.830704 |
VSGR | 1.09 | 0.914353 |
SR | 1.08 | 0.928560 |
RATE | 1.05 | 0.952745 |
Mean VIF | 1.41 |
4. Kiểm định tự tương quan ILLIQ
Wooldridge test for autocorrelation in panel data
H0: no first-order autocorrelation F( 1, 671) = 65.560
Prob > F = 0.0000
LM12
Wooldridge test for autocorrelation in panel data H0: no first-order autocorrelation
F( 1, 670) = 99.543
Prob > F = 0.0000
5. Kiểm định phương sai sai số thay đổi
ILLIQ
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (676) = 3.0e+05
Prob>chi2 = 0.0000
LM12
Modified Wald test for groupwise heteroskedasticity in fixed effect regression model
H0: sigma(i)^2 = sigma^2 for all i
chi2 (675) = 2.2e+06
Prob>chi2 = 0.0000
6. Kết quả kiểm định mô hình sau khắc phục phương sai không đồng nhất với 2 phương pháp FGLS và sai số chuẩn vững cho biến phụ thuộc ILLIQ
FGLS
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares Panels: heteroskedastic Correlation: no autocorrelation
covariances | = | 676 | Number of obs | = | 3,862 | |
Estimated | autocorrelations | = | 0 | Number of groups | = | 676 |
Estimated | coefficients | = | 13 | Obs per group: min | = | 1 |
avg | = | 5.713018 | ||||
max | = | 6 | ||||
Wald chi2(12) | = | 48518.53 | ||||
Prob > chi2 | = | 0.0000 |
Coef. | Std. Err. | z | P>|z| | [95% Conf. | Interval] | |
FreeFloat State Pcs TYPE KH KO TM VSGR size LnKLGD RATE Risk SR _cons | -.1761028 | .0651542 | -2.70 | 0.007 | -.3038027 | -.0484028 |
.2780143 | .0577087 | 4.82 | 0.000 | .1649073 | .3911212 | |
-2.682732 | .1251439 | -21.44 | 0.000 | -2.92801 | -2.437455 | |
-.1499061 | .0702227 | -2.13 | 0.033 | -.2875401 | -.0122721 | |
.4669767 | .0579328 | 8.06 | 0.000 | .3534304 | .5805229 | |
.4656505 | .0612538 | 7.60 | 0.000 | .3455953 | .5857056 | |
-1.509277 | .1067997 | -14.13 | 0.000 | -1.7186 | -1.299953 | |
-.2327736 | .0116269 | -20.02 | 0.000 | -.2555619 | -.2099853 | |
-.8760416 | .007783 | -112.56 | 0.000 | -.891296 | -.8607871 | |
10.82147 | 4.071565 | 2.66 | 0.008 | 2.84135 | 18.80159 | |
69.29304 | 1.433481 | 48.34 | 0.000 | 66.48347 | 72.10261 | |
-1.453919 | .2161769 | -6.73 | 0.000 | -1.877618 | -1.03022 | |
6.038824 | .3276778 | 18.43 | 0.000 | 5.396587 | 6.681061 |
Fixed-effects (within) | regression | Number | of obs | = | 3,862 | ||||
Group variable: MCT | Number | of groups | = | 676 | |||||
R-sq: | within | = | 0.5411 | Obs | per | group: | min | = | 1 |
between | = | 0.9106 | avg | = | 5.7 | ||||
overall | = | 0.8525 | max | = | 6 | ||||
F(12,675) | = | 111.75 | |||||||
corr(u_i, Xb) | = 0.0280 | Prob > F | = | 0.0000 |
(Std. Err. adjusted for 676 clusters in MCT)
Coef. | Robust Std. Err. | t P>|t| | [95% Conf. | Interval] | ||
FreeFloat State Pcs TYPE KH KO TM VSGR size LnKLGD RATE Risk SR _cons | -.2681394 | .1411452 | -1.90 0.058 | -.5452759 | .0089971 | |
.3939544 | .1807519 | 2.18 0.030 | .0390509 | .7488579 | ||
-1.58905 | .2592527 | -6.13 0.000 | -2.098089 | -1.080011 | ||
-.2231687 | .0955838 | -2.33 0.020 | -.410846 | -.0354914 | ||
.2691636 | .090209 | 2.98 0.003 | .0920397 | .4462875 | ||
.3093153 | .0943438 | 3.28 0.001 | .1240726 | .4945579 | ||
-.9809227 | .1929855 | -5.08 0.000 | -1.359847 | -.6019987 | ||
-.3753317 | .0736349 | -5.10 0.000 | -.5199128 | -.2307506 | ||
-.7973166 | .0403364 | -19.77 0.000 | -.8765166 | -.7181166 | ||
-.9164651 | 5.528004 | -0.17 0.868 | -11.77062 | 9.937685 | ||
68.98475 | 3.641777 | 18.94 0.000 | 61.83417 | 76.13532 | ||
-1.296813 | .2400364 | -5.40 0.000 | -1.768121 | -.8255055 | ||
7.621156 | 1.225611 | 6.22 0.000 | 5.214687 | 10.02763 | ||
sigma_u | .91489744 | |||||
sigma_e | .99827556 | |||||
rho | .45650155 | (fraction | of variance due | to | u_i) |
7. Kết quả kiểm định mô hình sau khắc phục phương sai không đồng nhất với 2 phương pháp FGLS và sai số chuẩn vững cho biến phụ thuộc LM12
FGLS
Cross-sectional time-series FGLS regression
Coefficients: generalized least squares Panels: heteroskedastic Correlation: no autocorrelation
covariances = | 675 | Number of obs = | 3,867 | |
Estimated | autocorrelations = | 0 | Number of groups = | 675 |
Estimated | coefficients = | 13 | Obs per group: | |
min = | 1 | |||
avg = | 5.728889 | |||
max = | 6 | |||
Wald chi2(12) = | 15552.96 | |||
Prob > chi2 = | 0.0000 |
Coef. | Std. Err. | z | P>|z| | [95% Conf. | Interval] | |
FreeFloat State Pcs TYPE KH KO TM VSGR size LnKLGD RATE Risk SR _cons | -.9509185 | .1465459 | -6.49 | 0.000 | -1.238143 | -.6636939 |
.555532 | .1306254 | 4.25 | 0.000 | .2995109 | .8115531 | |
-.548436 | .3070055 | -1.79 | 0.074 | -1.150156 | .0532838 | |
-.0273054 | .1808488 | -0.15 | 0.880 | -.3817626 | .3271518 | |
.4672182 | .1491957 | 3.13 | 0.002 | .1748 | .7596365 | |
.4120609 | .1543212 | 2.67 | 0.008 | .1095969 | .7145248 | |
-.0112841 | .2261357 | -0.05 | 0.960 | -.4545019 | .4319338 | |
-.426423 | .0265349 | -16.07 | 0.000 | -.4784305 | -.3744155 | |
-1.233048 | .0199231 | -61.89 | 0.000 | -1.272096 | -1.193999 | |
59.1296 | 9.51115 | 6.22 | 0.000 | 40.48809 | 77.77111 | |
51.04191 | 3.085199 | 16.54 | 0.000 | 44.99503 | 57.08879 | |
-2.145199 | .538953 | -3.98 | 0.000 | -3.201528 | -1.088871 | |
20.30068 | .7501532 | 27.06 | 0.000 | 18.8304 | 21.77095 |
Sai số chuẩn vững
Fixed-effects (within) regression Number of obs = 3,867 Group variable: MCT Number of groups = 675
R-sq: Obs per group:
within = 0.1364 min = 1
between = 0.6576 avg = 5.7
overall = 0.4908 max = 6
F(12,674) = 28.72
corr(u_i, Xb) = -0.4307 Prob > F = 0.0000
(Std. Err. adjusted for 675 clusters in MCT)
Coef. | Robust Std. Err. | t P>|t| | [95% Conf. | Interval] | ||
FreeFloat State Pcs TYPE KH KO TM VSGR size LnKLGD RATE Risk SR _cons | .3270895 | .4337509 | 0.75 0.451 | -.5245759 | 1.178755 | |
.0296492 | .5026876 | 0.06 0.953 | -.9573729 | 1.016671 | ||
-.3627253 | .8405965 | -0.43 0.666 | -2.013228 | 1.287778 | ||
-.0973078 | .4010406 | -0.24 0.808 | -.884747 | .6901314 | ||
.2588029 | .3533257 | 0.73 0.464 | -.4349486 | .9525544 | ||
.4498795 | .3513792 | 1.28 0.201 | -.2400501 | 1.139809 | ||
1.02592 | .4684135 | 2.19 0.029 | .1061947 | 1.945645 | ||
-2.033738 | .2641675 | -7.70 0.000 | -2.552429 | -1.515048 | ||
-.9187104 | .0654848 | -14.03 0.000 | -1.047289 | -.7901316 | ||
60.19603 | 17.67605 | 3.41 0.001 | 25.48929 | 94.90276 | ||
49.10434 | 9.240407 | 5.31 0.000 | 30.96089 | 67.24778 | ||
-1.298942 | 1.068146 | -1.22 0.224 | -3.396235 | .7983519 | ||
36.22329 | 4.026001 | 9.00 0.000 | 28.31828 | 44.1283 | ||
sigma_u | 3.2505771 | |||||
sigma_e | 3.5532219 | |||||
rho | .45560611 | (fraction | of variance due | to | u_i) |