84. AOAC. (1996 - 930.15), Official Method, Moisture in Animal Feed
85. Arik E. and Karaca S. (2017), The effect of some pre-slaughter factors on meat quality of bulls slaughtered in a commercial abattoir in Turkey, Indian Journal of Animal Research, 51(3), pp. 557-563.
86. Asimwe L. and Kifaro G. C. (2007), Effect of breed, season, year and parity on reproductive performance of dairy cattle under smallholder production system in Bukoba district, Tanzania, Livestock Research for Rural Development, 19(10).
87. Ba N. X., Van N. H., Ngoan L. D., Clare M. L., Peter T. D. (2008), Amount of Cassava Powder Fed as a Supplement Affects Feed Intake and Live Weight Gain in Laisind Cattle in Vietnam, Asian-Austrailian Journal of Animal Science, 21(8), pp. 1143-1150
88. Bartoň L., Řehák D., TeslíkV., Dbureš D., Zahrádková R. (2006), Effect of breed on growth performance and carcass composition of Aberdeen Angus, Charolais, Hereford and Simmental bulls, Czech Journal of Animal Science, 51(2), pp. 47-53.
89. Bass T. J. (2000), Meat Quality Traits and Genetic Selection, Iowa State University.
90. Bathaei S. S. and Leroy P. L. (1996), Growth and mature weight of Mehraban Iranian fat tailed sheep, Small Ruminant Research, 22, pp. 155-162.
91. Behr V., Hornick J. L., Cabaraux J. F., Alvarez A., Istasse L. (2001), Growth patterns of Belgian Blue replacement heifers and growing males in commercial farms, Livestock Production Science, 71, pp. 121-130.
92. Beltran J. J., Butts W.T., Olson T.A., Koger M. (1992), Growth patterns of two lines of Angus cattle selected using predicted growth parameters, Jounal of Animal Science, 70, pp. 734-741.
Có thể bạn quan tâm!
- Năng Suất Và Thành Phần Thân Thịt Của Các Tổ Hợp Bò Lai Giữa Đực Charolais, Droughtmaster Và Red Angus Với Cái Lai Brahman (Trung Bình ± Sd)
- Mất Nước Bảo Quản Và Mất Nước Chế Biến (%) Của Các Tổ Hợp Bò Lai Giữa Đực Charolais, Droughtmaster Và Red Angus Với Cái Lai Brahman (Trung Bình ± Sd)
- Khả năng sinh sản của bò cái Lai Brahman được phối giống Droughtmaster, Charolais, Red Angus và sức sản xuất thịt của đời con nuôi tại tỉnh Quảng Ngãi - 17
- Khả năng sinh sản của bò cái Lai Brahman được phối giống Droughtmaster, Charolais, Red Angus và sức sản xuất thịt của đời con nuôi tại tỉnh Quảng Ngãi - 19
- Khả năng sinh sản của bò cái Lai Brahman được phối giống Droughtmaster, Charolais, Red Angus và sức sản xuất thịt của đời con nuôi tại tỉnh Quảng Ngãi - 20
Xem toàn bộ 169 trang tài liệu này.
93. Bennet C. (2017), Mechanisms of Inbreeding Depression and Heterosis for Profitable Dairying, Extension Dairy Scientist, Genetics and Management Virginia Polytechnic Institute and State University, Blacksburg, pp. 1-5.
94. Bernardes P. A., Grossi D. A., Savegnago R. P., Buzanskas M. E., Urbinati I., Bezerra L. A. F., Lôbo R.B., Munar D. P. (2015), Estimates of genetic parameters and genetic trends for reproductive traits and weaning weight in Tabapuã cattle, Journal of Animal Science, 93 (11), pp. 5175-5185
95. Bertalanffy L. V. (1938), A quantitative theory of organic growth (inquiries on growth laws. II), Human Biologyl, 10(2), pp. 181–213.
96. Berry D. P and Evans R. D. (2014a), Genetics of reproductive performance in seasonal calving beef cows and its association with performance traits, Journal of Animal Science, 92, pp. 1412-1422.
97. Berry D. P., Wall E., Pryce J. E. (2014b), Genetics and genomics of reproductive performance in dairy and beef cattle, Animals, 8, pp. 105-121
98. Biraima A. D. A., Mohammed A. M., Webb E. C. (2019), Effects of electrical stimulation and age at slaughter on carcass and meat quality of two Sudanese Baggara beef types, South African Journal of Animal Science, 49 (5), pp. 904-913.
99. Bisinotto R. S., Greco L. F., Ribeiro E. S., Martinez N., Lima F. S., Staples C. R., ThatcherW. W., Santos J. E. P. (2012), Influences of nutrition and metabolism on fertility of dairy cows, Animal Reproduction, 9(3), pp. 260-272.
100. Bispo E., Monserrat L., González L., Franco D., Moreno T. (2010), Effect of weaning status on animal performance and meat quality of Rubia Gallega calves, Meat Science, 86, pp. 832-838.
101. Bobe G., Young J. W., Beitz D. C. (2004), Invited Review: Pathology, Etiology, Prevention, and Treatment of fatty liver in dairy Cows, Journal of Dairy Science, 87(10), pp. 3105-3124
102. Boccard, R., Buchter, L., Casteels, E., Cosentino, E., Dransfield, E., Hood, D., Touraille. C. (1981), Procedures for measuring meat quality characteristics in beef production experiments, Report of a working group in the commission of the European communities’ (CEC) beef production research programme, Livestock Production Science, 8, pp. 385-397.
103. Boleman S., Boleman S., Miller R., Taylor J., Cross H., Wheeler T., Koohmaraie M., Shackelford S., Miller M., West R. (1997), Consumer evaluation of beef of known categories of tenderness, Journal of Animal Science, 75, pp. 1521-1524.
104. Boligon A. A. and Albuquerque L. G. (2011), Genetic parameters and relationships of heifer pregnacy and age at first calving with weight gain, yearling and mature weight in Nellore cattle, Livestock Science, 141(1), pp. 12-16.
105. Boukha A., Bonfatti. V., Cecchinato A., AlberaL A., Gallo, Carnier P., Bittante
G. (2011), Genetic parameters of carcass and meat quality traits of double muscled Piemontese cattle, Meat Science, 89(1), pp. 84-90
106. Bourdon R. M. (1997), Understanding Animal Breeding, Colorado State University Prentice Hall Upper Saddle River, NJ 07458.
107. Brown J. E., Fitzhugh H. A., Cartwright T. C. (1976), A comparison of nonlinear models for 356 describing weight-age relationships in cattle, Jounal of Animal Science, 42, pp. 810-818.
108. Buchanan D. A. (2011), The Genetic Principles of Crossbreeding, Iowa Beef Center, Iowa State University Animal Industry Report.
109. Bureš D., Bartoň L, Zahrádková R., Teslík V., Krejčová M. (2006), Chemical composition, sensory characteristics, and fatty acid profile of muscle from Aberdeen Angus, Charolais, Simmental, and Hereford bulls, Czech Journal Animal of Science, 51 (7), pp. 279-284
110. Butler W. R. (2003), Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows, Livestock Production Science, 83, pp. 211-218.
111. Cafferky J., Hamill M. R., Allen P., O’Doherty V. J., Cromie A., Sweeney T. (2019), Effect of breed and gender on meat quality of M. longissimus thoracis et lumborum muscle from crossbred beef bulls and steers, Foods, 8(5), pp. 173-183
112. Canfield R. W., Sniffen C. J., Butler W. R. (1990), Effects of excess degradable protein on postpartum reproductive function in dairy cattle, Journal of Dairy Science, 72, pp. 767-783.
113. Carthy T. R., Ryan D. P., Fitzgerald A. M, Evans R. D, Berry D. P. (2015), Genetic parameters of ovarian and uterine reproductive traits in dairy cows, Journal of Dairy Science, 98(6), pp. 4095-4106
114. Chaiwang N., Jaturasitha S., Sringam K., Wicke M, Kreuzer M. (2015), Comparison of the meat quality of Thai indigenous upland cattle and F2- crossbreds with 75% Charolais blood proportion, Journal of Applied Animal Research, 43 (2), pp. 196-201.
115. Chambaz A., Scheeder M. R. L., M. Kreuzer M., Dufey P. A. (2003), Meat qualityof Angus, Simmental, Charolais and Limousin steers compared at the same intramuscular fat content, Meat Science, 63 (4), pp. 491-500
116. Chastant S. and Dizier S. M. (2019), Inflammation: friend or foe of bovine reproduction?, Animal Reproduction, 16(3), pp. 539-547
117. Chen J., Zhu H. B., Wang D., Wang F. Q., Hao H. S., Du W. H., Zhao X. M. (2012), Estimation of genetic parameters for growth traits in a crossbred population derived from piedmontese and nanyang cattle using a multi-trait animal model, Journal of Animal and Veterinary Advances, 11, pp. 1570-1573
118. Chiofalo V., Liotta L., Presti L. V., Gresta F., Rosa D. R. A., Chiofalo B. (2020), Effect of dietary olive cake supplementation on performance, carcass characteristics, and meat quality of beef cattle, Animals,10(7), pp. 1176-1189.
119. Cortese M., Segato S., Andrighetto I., Ughelini N., Chinello M., Eliana Schiavon E., Marchesini G. (2019), The Effects of decreasing dietary crude protein on the growth performance, feed efficiency and meat quality of finishing Charolais bulls, Animals, 9(11), pp. 906-919.
120. Cuvelier C., Clinquart A., Hocquette J. F., Cabaraux J. F., Dufrasne I., Istasse L., Hornick J. L. (2006), Comparison of composition and quality traits of meat from young finishing bulls from Belgian Blue, Limousin and Aberdeen Angus breeds, Meat Science, 74, pp. 522-531.
121. Dash S., Chakravarty A. K., Singh A., Upadhyay A., Singh M., Yousuf S. (2016), Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review, Veterinary World, 9(3), pp. 235-244.
122. Davis M. E., Boyles S. L., Moeller S. J., Simmen R. C. M. (2003), Genetic parameter estimates for serum insulin-like growth factor-I concentration and ultrasound measurements of backfat thickness and longissimus muscle area in Angus beef cattle, Journal of Animal Science, 81(9), pp. 2164-2170
123. den Hertog-Meischke M. J. A., van Laack R. J., Smulders F. J. (1997), The waterholding capacity of fresh meat, Veterinary Quarterly, 19(4), pp. 175-81.
124. De Palo P., Maggiolino A., Centoducati P., Tateo A. (2012), Colour changes in meat of foals as affected by slaughtering age and post-thawing time, Asian- Australasian Journal of Animal Science, 25, pp. 1775-1779.
125. De Rensis F., F.Lopez-Gatius, I.García-Ispierto, G.Morini, R.J.Scaramuzzi. (2017), Causes of declining fertility in dairy cows during the warm season, Theriogenology, 91(15), pp. 145-153.
126. Dinh Van Dung, Nguyen Xuan Ba, Do Van Quang, Dau Van Hai, Peter A. Lane, Nguyen Huu Van, David Parsons. (2019), Effects of level of concentrate on performance of finishing crossbred Brahman cattle in Vietnam, Journal of Animal Husbandry Sciences and Technics, 247.
127. Dinh Van Dung. (2014), Crude protein levels in concentrate and concentrate levels in diet affects local fattening cattle in Viet Nam, Dissertation, Nanjing Agricultural University.
128. Domingo G., Iglesias A., Monserrat L., Sanchez L., Jesus Cantalapiedra J., Lorenzo M. J. (2015), Effect of crossbreeding with Limousine, Rubia Gallega
and Belgium Blue on meat quality and fatty acid profile of Holstein calves,
Animal Science Journal, 86(11), pp. 913-921.
129. Dong Q. M., Zhao X. Q., Ma Y. S., Xu S. X., Li Q. Y. (2006), Liveweight gain, apparent digestibility, and economic benefits of Yaks fed different diets during winter on the Tibetan plateau, Livestock Production Science, 101, pp. 199-207.
130. Duarte - Ortuđo A., Thorpe W., Tewolde A. (2010), Reproductive performance of purebred and crossbred beef cattle in the tropics of Mexico, Animal Science, 47 (1), pp. 11-20.
131. Elzo M. A., Johnson D. D., Wasdin J. G., Driver J. D. (2012), Carcass and meat palatability breed differences and heterosis effects in an Angus–Brahman multibreed population, Meat Science, 90 (1), pp. 87-92
132. Esposito G., Irons P. C., Webb E. C., Chapwanya A. (2014), Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows, Animal Reproduction Science, 144, pp. 60-71.
133. Fahar I., Nawab A., Li G., Xiao M., An L., Naseer G. (2018), Effect of nutrition on reproductive efficiency of dairy animals, Medycyna Weter, 74 (6), pp. 356-361.
134. Favero R., Menezes G. R. O., TorresJr R. A. A., Silva L. O. C., Bonin. M. N., Feijó G. L. D., Altrak G., Niwa M. V. G., Kazama R., Mizubuti I. Y., Gomes R.
C. (2019), Crossbreeding applied to systems of beef cattle production to improve performance traits and carcass quality, Animals, 13(11), pp. 2679-2686
135. Fenwick M. A., Llewellyn S., Fitzpatrick R., Kenny D. A., Murphy J. J., Patton J., Wathes D. C. (2008), Negative energy balance in dairy cows is associated with specific changes in IGF-binding protein expression in the oviduct, Reproduction, 135, pp. 63-75.
136. Ferrell C.L. (1991), Maternal and fetal influences on uterine and conceptus development in the cow: I. Growth of tissues of the gravid uterus, Journal of Animal Science, 69(5), pp. 1945-1953.
137. Fitzhugh H. A. J. (1976), Analysis of growth curves and strategies for altering their shape, Jounal of Animal Science, 42, pp. 1036-1051.
138. Flowers S., Hamblen H, Gutiérrez J. D. L. G., Elzo M. A., Johnson A. D., Mateescu R. G. (2018), Fatty acid profile, mineral content, and palatability of beef from a multibreed Angus–Brahman population, Journal of Animal Science, 96 (10), pp. 4264-4275.
139. Forni S., Piles M., Blasco A., Varona L., Oliveira H. N. (2009), Comparison of different nonlinear functions to describe Nelore cattle growth, Jounal of Animal Science, 87, pp. 496-506.
140. Frisch J. E. (2009), Physiological reasons for heterosis in growth of Bos Indicus × Bos Taurus, The Journal of Agriculture Science, 109 (2), pp. 213-230
141. Gagaoua M., Terlouw E. M. C., Micol D., Hocquette J. F., Moloney A. P., Nuernberg K., Picard B. (2016), Sensory quality of meat from eight different types of cattle in relation with their biochemical characteristics, Journal of Integrated Agriculture,15, pp. 1550-1563.
142. Gaillard C., Vestergaard M., Weisbjerg M. R., Sehested J. (2016), Effects of live weight adjusted feeding strategy on plasma indicators of energy balance in Holstein cows managed for extended lactation, Animals, 10, pp. 633-642.
143. Galukande E., Mulindwa H., Wurzinger M., Roschinsky R., Mwai A. O., Sölkner J. (2013), Cross-breeding cattle for milk production in the tropics: achievements, challenges and opportunities, Animal Genetic, 52, pp. 111-125.
144. Gama L. T., Bressan L. C., Rodrigues E. C., Rossato L.V., Moreira O.C., Alves S.P., Bessa R. J. B. (2013), Heterosis for meat quality and fatty acid profiles in crosses among Bos Indicus and Bos Taurus finished on pasture or grain, Meat Science, 93(1), pp. 98-104
145. Garnero A. D. V., Marcondes C. R., Gunski R. J. (2006), Genetic trends in the expected progeny difference of the asymptotic weight of Nelore females, Genetics and Molecular Biology, 29, pp. 648-652.
146. Gate M.C. (2013), Evaluating the reproductive performance of British beef and dairy herds using national cattle movement records, Veterinary Record, 173(20), pp. 499-511.
147. Getahun D., Alemneh T., Akeberegn. D, Getabalew M, Zewdie D. (2019), Importance of hybrid vigor or heterosis for animal breeding, Biochemistry and Biotechnology Research, 7(1), pp. 1-4.
148. Gompertz B. (1825), On nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies, Philosophical Transactions of the Royal Society, 115, pp. 513-585.
149. Gil M., Serra X., Gispert M., Oliver M.À., Sađudo.C., Garcı́ a-Cachán M. D. (2001), The effect of breed-production systems on the myosin heavy chain 1,
the biochemical characteristics and the colour variables of Longissimus thoracis from seven Spanish beef cattle breeds, Meat Science, 58, pp. 181-188.
150. Gross J. J., Kessler E. C., Albrecht C., Bruckmaier R. M. (2015), Response of the cholesterol metabolism to a negative energy balance in dairy cows depends on the lactational stage, New Journal Introducing Plos Stutainability and Transformation.
151. Grumme R. R. (2008), Nutritional and management strategies for the prevention of fatty liver in dairy cattle, The Veterinary Journal, 176(1), pp. 10-20.
152. Hall B. (2004), The cow-calf manager, livestock update virginai cooperative extension, www.sites.ext.vt.edu/newsletter-archive/livestock/aps-04_03/aps-315.
153. Haque M. A., Fatematuzzohora M., Hoque M. A., Ali M. Y. (2016), Evaluation of growth performance of Brahman cross calves to local environment of Bangladesh, Asian Journal of Medical and Biological Research. 2 (2), pp. 259-265
154. Harris P. V. and Shorthose W. R. (1988), Meat texture, In: Lawrie R.A. (editor), Developments in Meat Science, London, Elsevier Applied Science, pp. 245-296.
155. Heins B. J. (2007), Impact of an old technology on profitable dairying in the 21stCentury, 4th Biennial WE Petersen Symposium, pp. 7-19.
156. Hernández N., Martínez-González J., Parra-Bracamonte G., Ibarra-Hinojosa M., Briones-Encinia F., Saldađa-Campos P., Ortega-Rivas E. (2015), Non-genetic effects on growth characteristics of Brahman cattle, Revista MVZ Córdoba, 20(1), pp. 4427-4435.
157. Hocquette J. F., Botreau R., Picard B., Jacquet A., Pethick D. W., Scollan. N.
D. (2012), Opportunities for predicting and manipulating beef quality, Meat Science, 92, pp. 197-209
158. Honig A C., Inhuber V., Spiekers H., Windisch W., Kay-UweGötz., Ettle T. (2020), Influence of dietary energy concentration and body weight at slaughter on carcass tissue composition and beef cuts of modern type Fleckvieh (German Simmental) bulls, Meat Science, 169, pp. 108-109
159. Honikel K. O. (1998), “Physikalische mebmethoden zur erfassung der fleischqualitat”, qualitat von fleisch und fleischwaren, band 2, pp. 696-700
160. Honikel. K. O. and Hamm. R. (1994), Measurement of water holding capacity and juiciness, In Advances in Meat Research, 9th ed.; Pearson, A.M., Dutson, T.R., Eds., Blackie Academic and Professional: London, UK, pp. 125-161.
161. Houben J. H., van Dijk A., Eikelenboom G., Hoving-Bolink A. H. (2000), Effect of dietary vitamin E supplementation, fat level and packaging on colour stability and lipid oxidation in minced beef, Meat Science, 55 (3), pp. 331-336
162. Humada M.J., Sađudo C., Serrano E. (2014), Chemical composition, vitamin E content, lipid oxidation, colour and cooking losses in meat from Tudanca bulls finished on semi-extensive or intensive systems and slaughtered at 12 or 14 months, Meat Science, 96, pp. 908-915.
163. Husnul K., Muhammad A., Tamba B., Ketut korya wisina I., Sutrisnak, Rahardjo H.B., Lazuardy T. (2018), Reproductive efficiency of Brahman cross cattle using Artificial insemination with frozen semen from Bali, Brahman, Limousin and Simmental cattle, Proceedings of the 20th FAVA & the 15th KIVNAS PDHI 2018.
164. Hwang Y. H. and Joo S. T. (2017), Fatty acid profiles, meat quality, and sensory palatability of Grain-fed and Grass-fed Beef from Hanwoo, American, and Australian crossbred cattle, Korean Journal for Food Science of Animal Resoures, 37(2), pp. 153-161.
165. Institus de l’Elevage (2006), “La composante structurelle et l’acidification du muscle (pH)”, Le Point sur la Couleur de la Viande Bovine, Fiche 3, pp. 1-5
166. Ito R. H., do Prado I. N, Rotta P. P., de Oliveira M. G., do Prado R. M., Moletta
J. L. (2012), Carcass characteristics, chemical composition and fatty acid profile of longissimus muscle of young bulls from four genetic groups finished in feedlot, Revista Brasileira de Zootecnia, 4(2), pp. 384-391.
167. Jobgen W. S., Fried S. K., Fu W. J., Meininger C. J., Wu G. Y. (2006), Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates, Journal of Nutritional Biochemistry, 17, pp. 571-588.
168. Johnston D. J., Reverter A., Ferguson D. M., Thompson J. M., Burrow H. M. (2003), Genetic and phenotypic characterisation of animal, carcass, and meat quality traits from temperate and tropically adapted beef breeds.3, Meat quality traits, Australian Journal of Agricultural Research, 54(2), pp.135-147.
169. Kang K., Ma J., Wang H., Wang Z., Peng Q., Hu R., Zou H., Shanke Bao S., Zhang W., Sun B. (2020), High‐energy diet improves growth performance, meat quality and gene expression related to intramuscular fat deposition in finishing yaks raised by barn feeding, Veterinary Medicine and Science, 6, pp. 755-765.
170. Kapituła M. M., Nogalski Z., Kwiatkowska A. (2016), The influence of crossbreeding on collagen solubility and tenderness of Infraspinatus and Semimembranosus muscles of semi‐intensively reared young bulls, Animal Science Journal, 87(10), pp. 1312-1321.