Văn Đình Hoa, Nguyễn Ngọc Lanh (2006). Sinh Lý Bệnh Và Miễn Dịch.

2. Ngo Truong Giang, Hoang van Tong, Do Quyet, Nghiem Xuan Hoan, Trinh Huu Nghia, Nguyen Minh Nam, Hoang Vu Hung, Do Tuan Anh, Can Van Mao, Ho Anh Son, Christian G. Meyer, Thirumalaisamy P. Velavan,Nguyen Linh Toan (2020). Complement protein levels and MBL2 polymorphisms are associated with dengue and disease severity,Scientific Reports, 10: 14923


TÀI LIỆU THAM KHẢO

1. WHO. (2022). Dengue and severe dengue.

2. WHO. (2020). Update on the Dengue situation in the Western Pacific Region. Dengue Situation Update Number 585.

3. Company W. (2013)Kuby IMMUNOLOGY.p.187­221

4. Garred P., Madsen H.O., Balslev U., et al. (1997). Susceptibility to HIV infection and progression of AIDS in relation to variant alleles of mannose­binding lectin. The Lancet. 349(9047):236­240.

5. Yuen M.F., Lau C.S., Lau Y.L., et al. (1999). Mannose binding lectin gene mutations are associated with progression of liver disease in chronic hepatitis B infection. Hepatology. 29(4):1248­1251.

6. Matsushita M., Hijikata M., Matsushita M., et al. (1998). Association of mannose­binding lectin gene haplotype LXPA and LYPB with interferon­resistant hepatitis C virus infection in Japanese patients. Journal of Hepatology. 29(5):695­700.

7. Fuchs A., Lin T.­Y., Beasley D.W., et al. (2010). Direct complement restriction of flavivirus infection requires glycan recognition by mannose­binding lectin. Cell Host &Microbe. 8(2):186­195.

Có thể bạn quan tâm!

Xem toàn bộ 189 trang tài liệu này.

8. Hu Y.L., Luo F.L., Fu J.L., et al. (2013). Early increased ficolin‐2 concentrations are associated with severity of liver inflammation and efficacy of anti‐viral therapy in chronic hepatitis C patients. Scandinavian Journal of Immunology. 77(2):144­150.

9. Tong H.V., Toan N.L., Song L.H., et al. (2011). Ficolin­2 levels and FCN2 haplotypes influence hepatitis B infection outcome in Vietnamese patients. PLoS One. 6(11):e28113.

Nghiên cứu tính đa hình gen MBL2, FCN2 và nồng độ protein MBL, Ficolin-2 ở bệnh nhân sốt xuất huyết Dengue - 21

10. Bộ môn Truyền nhiễm (2015), Sốt xuất huyết Dengue,Bệnh học

Truyền nhiễm. Nhà xuất bản quân đội nhân dân: 138­154.

11. WHO. (2009). Dengue guidelines for diagnosis, treatment, prevention and control: new edition.

12. Cucunawangsih, Lugito N.P.H. (2017). Trends of Dengue Disease Epidemiology. Virology : Research and Treatment.

13. Bùi Đại (1999),Dengue xuất huyết. Nhà xuất bản y học, Hà Nội.

14. Cục Y tế Dự phòng (2020). Tình hình dịch bệnh sốt xuất huyết và các biện pháp phòng chống trọng tâm.

15. Pang X., Zhang R., Cheng G. (2017). Progress towards understanding the pathogenesis of dengue hemorrhagic fever. Virologica Sinica. 32(1):16­ 22.

16. Chuang Y.­C., Lin J., Lin Y.­S., et al. (2016). Dengue virus nonstructural protein 1–induced antibodies cross­react with human plasminogen and enhance its activation. The Journal of Immunology. 196(3):1218­1226.

17. Chuang Y.­C., Wang S.­Y., Lin Y.­S., et al. (2013). Re­evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. Journal of Biomedical Science. 20(1):1­7.

18. Srikiatkhachorn A., Kelley J.F. (2014). Endothelial cells in dengue hemorrhagic fever. Antiviral Research. 109:160­170.

19. Beatty P.R., Puerta­Guardo H., Killingbeck S.S., et al. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Science Translational Medicine. 7(304):304ra141­304ra141.

20. Modhiran N., Watterson D., Muller D.A., et al. (2015). Dengue virus NS1 protein activates cells via Toll­like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine. 7(304):304ra142­304ra142.

21. Suresh R., Chandrasekaran P., Sutterwala F.S., et al. (2016). Complement­mediated ‘bystander’damage initiates host NLRP3 inflammasome activation. Journal of Cell Science. 129(9):1928­1939.

22. Chen H.­R., Chuang Y.­C., Lin Y.­S., et al. (2016). Dengue virus nonstructural protein 1 induces vascular leakage through macrophage migration inhibitory factor and autophagy. PLoS Neglected Tropical Diseases. 10(7):e0004828.

23. Jacobs M.G., Robinson P.J., Bletchly C., et al. (2000). Dengue virus nonstructural protein 1 is expressed in a glycosyl‐phosphatidylinositol‐ linked form that is capable of signal transduction. The FASEB Journal. 14(11):1603­1610.

24. Lin C.­F., Chiu S.­C., Hsiao Y.­L., et al. (2005). Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. The Journal of Immunology. 174(1):395­403.

25. Liu J., Liu Y., Nie K., et al. (2016). Flavivirus NS1 protein in infected host sera enhances viral acquisition by mosquitoes. Nature Microbiology. 1(9):1­11.

26. Wan S.­W., Lu Y.­T., Huang C.­H., et al. (2014). Protection against dengue virus infection in mice by administration of antibodies against modified nonstructural protein 1. PloS One. 9(3):e92495.

27. Chapman E.G., Costantino D.A., Rabe J.L., et al. (2014). The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science. 344(6181):307­310.

28. Roby J.A., Pijlman G.P., Wilusz J., et al. (2014). Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses. 6(2):404­427.

29. Chang R.­Y., Hsu T.­W., Chen Y.­L., et al. (2013). Japanese encephalitis virus non­coding RNA inhibits activation of interferon by blocking nuclear translocation of interferon regulatory factor 3. Veterinary Microbiology. 166(1­2):11­21.

30. Manokaran G., Finol E., Wang C., et al. (2015). Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science. 350(6257):217­221.

31. Moon S.L., Anderson J.R., Kumagai Y., et al. (2012). A noncoding RNA produced by arthropod­borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. Rna. 18(11):2029­2040.

32. Schnettler E., Sterken M.G., Leung J.Y., et al. (2012). Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and Mammalian cells. Journal of Virology. 86(24):13486­13500.

33. Guzman M.G., Alvarez M., Halstead S.B. (2013). Secondary infection as a risk factor for dengue hemorrhagic fever/dengue shock syndrome: an historical perspective and role of antibody­dependent enhancement of infection. Archives of Virology. 158(7):1445­1459.

34. Srikiatkhachorn A. (2009). Plasma leakage in dengue hemorrhagic fever.

Thrombosis and Haemostasis. 102(6):1042.

35. Sato R., Hamada N., Kashiwagi T., et al. (2015). Dengue hemorrhagic fever in a Japanese traveler with pre­existing Japanese encephalitis virus antibody. Tropical Medicine and Health. 43(2):85­88.

36. Halstead S.B. (1982). Immune enhancement of viral infection. Immunity and Concomitant Immunity in Infectious Diseases. 31:301­364.

37. Mathew A., Rothman A.L. (2008). Understanding the contribution of cellular immunity to dengue disease pathogenesis. Immunological Reviews. 225(1):300­313.

38. Malavige G.N., Huang L.­C., Salimi M., et al. (2012). Cellular and cytokine correlates of severe dengue infection. PLOS One. 7(11):e50387.

39. Kurane I., Matsutani T., Suzuki R., et al. (2011). T­cell responses to dengue virus in humans. Tropical Medicine and Health.1111290192­ 1111290192.

40. Jaiyen Y., Masrinoul P., Kalayanarooj S., et al. (2009). Characteristics of dengue virus‐infected peripheral blood mononuclear cell death that correlates with the severity of illness. Microbiology and Immunology. 53(8):442­450.

41. Văn Đình Hoa, Nguyễn Ngọc Lanh (2006). Sinh lý bệnh và Miễn dịch.

p.69­80 .

42. Andrews P.A., Zhou W., Sacks S.H. (1995). Tissue synthesis of complement as an immune regulator. Molecular Medicine Today. 1(4):202­207.

43. Garred P., Larsen F., Seyfarth J., et al. (2006). Mannose­binding lectin and its genetic variants. Genes & Immunity. 7(2):85­94.

44. Ezekowitz R., Day L.E., Herman G.A. (1988). A human mannose­ binding protein is an acute­phase reactant that shares sequence homology with other vertebrate lectins. The Journal of Experimental Medicine. 167(3):1034­1046.

45. Lu J., Thiel S., Wiedemann H., et al. (1990). Binding of the pentamer/hexamer forms of mannan­binding protein to zymosan activates the proenzyme C1r2C1s2 complex, of the classical pathway of complement, without involvement of C1q. The Journal of Immunology. 144(6):2287­2294.

46. Larsen F., Madsen H.O., Sim R.B., et al. (2004). Disease­associated mutations in human mannose­binding lectin compromise oligomerization and activity of the final protein. Journal of Biological Chemistry. 279(20):21302­21311.

47. Teillet F., Dublet B., Andrieu J.­P., et al. (2005). The two major oligomeric forms of human mannan­binding lectin: chemical characterization, carbohydrate­binding properties, and interaction with MBL­associated serine proteases. The Journal of Immunology. 174(5):2870­2877.

48. Krarup A., Sørensen U.B.S., Matsushita M., et al. (2005). Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern

recognition molecules mannan­binding lectin, L­ficolin, and H­ficolin.

Infection and Immunity. 73(2):1052­1060.

49. Lipscombe R., Sumiya M., Summerfield J., et al. (1995). Distinct physicochemical characteristics of human mannose binding protein expressed by individuals of differing genotype. Immunology. 85(4):660.

50. Anders E.M., Hartley C.A., Jackson D.C. (1990). Bovine and mouse serum beta inhibitors of influenza A viruses are mannose­binding lectins. Proceedings of the National Academy of Sciences. 87(12):4485­4489.

51. Ip W., Takahashi K., Moore K.J., et al. (2008). Mannose­binding lectin enhances Toll­like receptors 2 and 6 signaling from the phagosome. Journal of Experimental Medicine. 205(1):169­181.

52. Jack D.L., Jarvis G.A., Booth C.L., et al. (2001). Mannose­binding lectin accelerates complement activation and increases serum killing of Neisseria meningitidis serogroup C. The Journal of Infectious diseases. 184(7):836­845.

53. Polotsky V.Y., Fischer W., Ezekowitz R., et al. (1996). Interactions of human mannose­binding protein with lipoteichoic acids. Infection and Immunity. 64(1):380­383.

54. Nadesalingam J., Dodds A.W., Reid K.B., et al. (2005). Mannose­ binding lectin recognizes peptidoglycan via the N­acetyl glucosamine moiety, and inhibits ligand­induced proinflammatory effect and promotes chemokine production by macrophages. The Journal of Immunology. 175(3):1785­1794.

55. Polotsky V.Y., Belisle J.T., Mikusova K., et al. (1997). Interaction of human mannose­binding protein with Mycobacterium avium. Journal of Infectious Diseases. 175(5):1159­1168.

56. Nauta A.J., Raaschou‐Jensen N., Roos A., et al. (2003). Mannose‐ binding lectin engagement with late apoptotic and necrotic cells. European Journal of Immunology. 33(10):2853­2863.

57. Ogden C.A., Cathelineau A., Hoffmann P.R., et al. (2001). C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. Journal of Experimental Medicine. 194(6):781­796.

58. Stuart L.M., Takahashi K., Shi L., et al. (2005). Mannose­binding lectin­ deficient mice display defective apoptotic cell clearance but no autoimmune phenotype. The Journal of Immunology. 174(6):3220­3226.

59. Collard C.D., Montalto M.C., Reenstra W.R., et al. (2001). Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1. The American Journal of Pathology. 159(3):1045­1054.

60. Muto S., Sakuma K., Taniguchi A., et al. (1999). Human mannose­ binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biological and Pharmaceutical Bulletin. 22(4):347­352.

61. Muto S., Takada T., Matsumoto K. (2001). Biological activities of human mannose­binding lectin bound to two different ligand sugar structures, Lewis A and Lewis B antigens and high­mannose type oligosaccharides. Biochimica et Biophysica Acta (BBA)­General Subjects. 1527(1­2):39­46.

62. Kawasaki N., Lin C.­W., Inoue R., et al. (2009). Highly fucosylated N­ glycan ligands for mannan­binding protein expressed specifically on CD26 (DPPVI) isolated from a human colorectal carcinoma cell line, SW1116. Glycobiology. 19(4):437­450.

63. Malhotra R., Wormald M.R., Rudd P.M., et al. (1995). Glycosylation changes of IgG associated with rheumatooid arthritis can activate complement via the mannose­binding protein. Nature Medicine. 1(3):237­243.

64. Holmskov U., Thiel S., Jensenius J.C. (2003). Collectins and ficolins: humoral lectins of the innate immune defense. Annual review of Immunology. 21(1):547­578.

65. Hisano S., Matsushita M., Fujita T., et al. (2001). Mesangial IgA2 deposits and lectin pathway­mediated complement activation in IgA glomerulonephritis. American Journal of Kidney Diseases. 38(5):1082­ 1088.

66. Matsushita M., Thiel S., Jensenius J.C., et al. (2000). Proteolytic activities of two types of mannose­binding lectin­associated serine protease. The Journal of Immunology. 165(5):2637­2642.

67. Dahl M.R., Thiel S., Matsushita M., et al. (2001). MASP­3 and its association with distinct complexes of the mannan­binding lectin complement activation pathway. Immunity. 15(1):127­135.

68. Kurata H., Cheng H., Kozutsumi Y., et al. (1993). Role of the collagen­ like domain of the human serum mannan­binding protein in the activation of complement and the secretion of this lectin. Biochemical and biophysical research communications. 191(3):1204­1210.

69. Matsushita M., Fujita T. (2001). Ficolins and the lectin complement pathway. Immunological reviews. 180(1):78­85.

70. Endo Y., Matsushita M., Fujita T. (2007). Role of ficolin in innate immunity and its molecular basis. Immunobiology. 212(4­5):371­379.

71. Super M., Lu J., Thiel S., et al. (1989). Association of low levels of mannan­binding protein with a common defect of opsonisation. The Lancet. 334(8674):1236­1239.

72. Sumiya M., Tabona P., Arai T., et al. (1991). Molecular basis of opsonic defect in immunodeficient children. The Lancet. 337(8757):1569­1570.

73. Garred P., Madsen H., Kurtzhals J., et al. (1992). Diallelic polymorphism may explain variations of the blood concentration of mannan‐binding protein in Eskimos, but not in black Africans. International Journal of Immunogenetics. 19(6):403­412.

74. Lipscombe R., Sumiya M., Hill A., et al. (1992). High frequencies in African and non­African populations of independent mutations in the mannose binding protein gene. Human Molecular Genetics. 1(9):709­ 715.

75. Madsen H.O., Garred P., Kurtzhals J.A., et al. (1994). A new frequent allele is the missing link in the structural polymorphism of the human mannan­binding protein. Immunogenetics. 40(1):37­44.

76. Madsen H.O., Garred P., Thiel S., et al. (1995). Interplay between promoter and structural gene variants control basal serum level of mannan­binding protein. The Journal of Immunology. 155(6):3013­3020.

77. Madsen H.O., Satz M.L., Hogh B., et al. (1998). Different molecular events result in low protein levels of mannan­binding lectin in populations from southeast Africa and South America. The Journal of Immunology. 161(6):3169­3175.

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 12/05/2024