Bảng 4.5: Kết quả phân tích nhân tố cho biến độc lập
Tên nhân tố | Biến quan sát | Hệ số tải nhân tố | Số lượng biến | |
1 | Chất lượng eWOM | CL1 | 0,734 | 5 |
CL2 | 0,720 | |||
CL3 | 0,694 | |||
CL4 | 0,704 | |||
CL5 | 0,726 | |||
2 | Độ tin cậy eWOM | TC1 | 0,761 | 4 |
TC2 | 0,796 | |||
TC3 | 0,753 | |||
TC4 | 0,765 | |||
3 | Tính hữu ích của eWOM | HI1 | 0,716 | 4 |
HI2 | 0,772 | |||
HI4 | 0,749 | |||
HI5 | 0,716 | |||
4 | Số lượng eWOM | SL1 | 0,714 | 4 |
SL2 | 0,699 | |||
SL3 | 0,829 | |||
SL4 | 0,810 | |||
5 | Chuyên môn người gửi eWOM | CM1 | 0,746 | 4 |
CM2 | 0,746 | |||
CM3 | 0,766 | |||
CM4 | 0,799 | |||
Phương sai trích = 63,608% % và Eigenvalues >1 |
Có thể bạn quan tâm!
- Kết Quả Điều Chỉnh Và Phát Triển Thang Đo
- Hiệu Chỉnh Thang Đo Ý Định Mua Tour Du Lịch Nước Ngoài
- Kiểm Định Độ Tin Cậy Của Thang Đo Bằng Cronbach’Alpha
- Kiểm Định Sự Khác Biệt Giữa Các Nhóm Nhân Tố: Giới Tính, Độ Tuổi, Thu Nhập
- Chú Trọng Đến Kiểm Soát Chất Lượng Thông Tin Ewom
- Hạn Chế Của Nghiên Cứu Và Hướng Nghiên Cứu Tiếp Theo
Xem toàn bộ 144 trang tài liệu này.
Nguồn: Thống kê từ SPSS
Nhân tố 1, chất lượng eWOM bao gồm các biến quan sát: CL1, CL2, CL3, CL4, CL5 Nhân tố 2, độ tin cậy eWOM bao gồm các biến quan sát: TC1, TC2, TC3, TC4 Nhân tố 3, chuyên môn người gửi eWOM bao gồm các biến quan sát: CM1, CM2,
CM3, CM4
Nhân tố 4, tính hữu ích của eWOM bao gồm các biến quan sát: HI1, HI2, HI4, HI5 Nhân tố 5, số lượng eWOM bao gồm các biến quan sát: SL1, SL2, SL3, SL4
Theo Gerbing và Anderson (1988), tiêu chuẩn để cấp nhận độ hội tụ của các nhân tố là phương sai trích hớn hơn hoặc bằng 50%. Kết quả phân tích nhân tố khám phá với phương sai trích là 63,608%, điều này chứng tỏ 63,608% được giải thích bởi 5 nhân tố. Đồng thời hệ số Eigenvalues = 0,152 > 1 đại diện cho biến thiên được giải thích bởi mỗi nhân tốt. Theo Hair và cộng sự (2006) hệ số nhân tố tải giúp đảm bảo mức ý nghĩa của phân tích nhân tố, hệ số tải phải lớn hơn 0,3 là đạt mức tối thiểu, bài nghiên cứu chọn hệ số tải lớn hơn 0,3 trong phân tích nhân tố. Các biến quan sát được xếp thành từng nhóm với nhau trong cùng một thang đo đã đề xuất từ ban đầu. Các biến quan sát chỉ xuất hiện một lần trong 1 nhân tố và tất cả các giá trị trong phân tích nhân tố đều lớn hơn 0,5 chứng tỏ những biến quan sát có ý nghĩa thực tiễn có thể được dùng để xây dựng mô hình hồi quy. Đồng thời thông qua phân tích nhân tố khám phá tất cả các biến được đưa vào đều được giữ lại.
4.3.2 Phân tích nhân tố khám phám EFA cho nhân tố phụ thuộc
Sau khi tiến hành phân tích nhân tố cho nhóm nhân tố biến độc lập, tác giả tiến hành phân tích nhân tố cho biến phụ thuộc.
Bảng 4.6: Kiểm định hệ số KMO
0,731 | ||
Bartlett's Test of Sphericity | Approx. Chi-Square | 479,977 |
df | 3 | |
Sig. | 0,000 |
Nguồn: Thống kê từ SPSS Chỉ số KMO = 0,731 > 0,5 nên phân tích nhân tố phù hợp với dữ liệu thực hiện nghiên cứu. Bên cạnh đó, mức ý nghĩa sig = 0,000 < 0,05 nên các biến quan sát có tương quan với nhau trong tổng thể. Kết quả kiểm định KMO hoàn toàn hợp lệ để phân tích
nhân tố.
Tiếp đó 3 biến phụ thuộc được đưa vào phân tích nhân tố khám phá cho ra kết quả như sau:
Bảng 4.7: Phân tích nhân tố khám phá cho biến phụ thuộc
Tên nhân tố | Biến quan sát | Hệ số tải nhân tố | Số lượng biến | |
1 | Ý định mua tour du lịch | YD1 | 0,905 | 3 |
YD2 | 0,9 | |||
YD3 | 0,867 | |||
Phương sai trích= 79,352% và Eigenvalue > 1 |
Nguồn: Thống kê từ SPSS
Kết quả phân tích nhân tố khám phá EFA đối với biến độc lập với phương sai trích bằng 79,352% và giá trị Eigenvalue = 2,381 > 1. Kết quả phân tích được kể hiện rõ trong bảng 4.7.
4.4 Phân tích tương quan và hồi quy
4.4.1 Phân tích tương quan
Đầu tiên trước khi phân tích tương quan và phân tích hồi quy tuyến tính, tác giả tiến hành tính giá trị đại diện của các nhân tố, sau đó dùng giá trị đại diện để phân tích tương quan. Giá trị đại diện được tính theo các nhân tố đã phân tích ở bước phân tích nhân tố khám phá EFA. Giá trị đại diện được tính cho từng nhân tố như sau:
Giá trị đại diện của nhân tố chất lượng eWOM được đặt tên là CL được tính theo công thức: CL = Mean (CL1, CL2, CL3, CL4)
Giá trị đại diện của nhân tố: độ tin cậy eWOM được đặt tên là TC được tính theo công thức: TC = Mean (TC1, TC2, TC3, TC4)
Giá trị đại diện của nhân tố: Tính hữu ích của eWOM được đặt tên là HI và được tính theo công thức: HI = Mean (HI1, HI2, HI4, HI5), ở đây không tính HI3 vì biến HI3 đã bị loại từ bước kiểm định độ tin cậy của thang đo.
Giá trị đại diện của nhân tố số lượng eWOM được đặt tên là SL và được tính theo công thức: SL = Mean (SL1, SL2, SL3, SL4).
Giá trị đại diện của nhân tố chuyên môn người gửi eWOM được đặt tên là CM và được tính theo công thức: CM = Mean (CM1, CM2, CM3, CM4).
Giá trị đại diện của nhân tố ý định mua tour du lịch được đặt tên là YD và được tính theo công thức: YD = Mean (YD1, YD2, YD3)
Sau khi đã tiến hành tính giá trị đại diện là trung bình của các nhân tố, dựa vào đó để phân tích tương quan giữa các biến trong mô hình nghiên cứu.
Bảng 4.8: Hệ số tương quan giữa các nhân tố
CL | TC | HI | SL | CM | YD | |
CL | 1 | 0,408** | 0,439** | 0,360** | 0,400** | 0,565** |
TC | 0,408** | 1 | 0,347** | 0,270** | 0,341** | 0,474** |
HI | 0,439** | 0,347** | 1 | 0,337** | 0,521** | 0,520** |
SL | 0,360** | 0,270** | 0,337** | 1 | 0,378** | 0,443** |
CM | 0,400** | 0,341** | 0,521** | 0,378** | 1 | 0,530** |
YD | 0,565** | 0,474** | 0,520** | 0,443** | 0,530** | 1 |
Nguồn: Kết quả từ SPSS Hệ số tương quan trong mô hình nghiên cứu có mức ý nghĩa là 0,05. Tất cả giá trị sig. của các biến CL, TC, HI, SL, CM và YD đều nhỏ hơn 0,05. Hệ số sig. Ở các biến độc lập bằng 0 cho thấy các biến độc lập không tương quan với nhau và không có hiện tượng đa cộng tuyến. Bên cạnh đó, hệ số Pearson là dương nên các biến độc lập có xu hướng tương quan cùng chiều với biến phụ thuộc. Sau khi phân tích tương quan tất cả
các biến đều được giữ lại để sử dụng trong phân tích hồi quy đa biến.
4.4.2 Phân tích hồi quy
4.4.2.1 Đánh giá độ phù hợp của mô hình
Phân tích hồi quy đa biến nhằm mục đích xác định ảnh hưởng của các CL, CM, SL, HI, TC lên biến YD, xác định mức độ tác động của biến độc lập nên biến phụ thuộc và đưa ra hàm hồi quy tuyến tính bội. Sau khi phân tích Pearson thì tất cả các biến độc lập ban đầu trong mô hình đề xuất đều được giữ lại. Một chỉ số quan trọng trong phân tích hồi quy tuyến tính bội đó là hệ số R2 hiệu chỉnh. R2 hiệu chỉnh thường được sử dụng để đánh giá mức độ phù hợp của mô hình hồi quy tuyến tính đa biến (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008)
Bảng 4.9: Tóm tắt các kết quả chính trong nghiên cứu
R | R2 | R2 hiệu chỉnh | Phương sai | |
1 | 0,717a | 0,514 | 0,506 | 0,49426 |
Nguồn: Phân tích từ SPSS Trong bảng trên có thể thấy hệ số R2 hiệu chỉnh = 0,506 cho thấy mức độ phù hợp của mô hình nghiên cứu là 50,6%. Tương đương với sự tương thích giữa mô hình đưa ra và các biến quan sát là 50,6% (nghiên cứu tác động của eWOM đến ý định mua tour du lịch của khách hàng được giải thích bởi 5 biến độc lập). Như vậy các biến độc lập được đưa
ra trong mô hình nghiên cứu chỉ giải thích được 50,6% biến phụ thuộc.
4.4.2.2 Kiểm định độ phù hợp của mô hình
Kiểm định độ phù hợp của mô hình (hay kiểm định F) là dùng để kiểm định giả thuyết về mức độ phù hợp của mô hình hồi quy tuyến tính (Hoàng Trọng và Chu Nguyễn Mộng Ngọc, 2008). Trị thống kê F được tính từ giá trị R bình phương.
Bảng 4.10: Kiểm định độ phù hợp của mô hình nghiên cứu
Tổng bình phương | df | Bình phương trung bình | F | Sig. | ||
1 | Hồi quy | 81,257 | 5 | 16,251 | 66,523 | 0,000b |
Số dư | 76,953 | 315 | 0,244 | |||
Tổng | 158,210 | 320 | ||||
a. Biến phụ thuộc: YD | ||||||
b. Biến đốc lập (hằng số), CM, TC, SL, CL, HI |
Nguồn: Kết quả phân tích SPSS Giá trị Sig. trong kiểm định độ phù hợp của mô hình nghiên cứu = 0,000, điều này cho thấy mô hình hồi quy tuyến tính bội là phù hợp với tập dữ liệu đồng thời có thể sử
dụng được.
4.4.2.4 Ý nghĩa các hệ số hồi quy trong mô hình
Mỗi hệ số hồi quy trong mô hình nghiên cứu đều có một ý nghĩa riêng. Trong đó, sig., beta đã chuẩn hóa và VIF là những hệ số được quan tâm nhiều nhất. Dưới đây là bảng số liệu được phân tích từ SPSS và ý nghĩa của các hệ số hồi quy:
Bảng 4.11: Các thông số thống kê của từng biến
Hệ số chưa chuẩn hóa | Hệ số chuẩn | t | Sig. | Thống kê đa cộng tuyến | ||||
β | Sai số chuẩn | β | Tolerance | VIF | ||||
1 | Hằng số | 0,434 | 0,147 | 2,945 | 0,003 | |||
CL | 0,252 | 0,044 | 0,272 | 5,746 | 0,000 | 0,688 | 1,454 | |
TC | 0,170 | 0,040 | 0,190 | 4,257 | 0,000 | 0,778 | 1,286 | |
HI | 0,144 | 0,040 | 0,174 | 3,573 | 0,000 | 0,647 | 1,545 | |
SL | 0,144 | 0,041 | 0,157 | 3,544 | 0,000 | 0,790 | 1,266 | |
CM | 0,159 | 0,037 | 0,207 | 4,248 | 0,000 | 0,652 | 1,533 | |
a. Biến phụ thuộc: YD |
Nguồn: Phân tích SPSS Chất lượng eWOM (CL), độ tin cậy eWOM (TC), sự hữu ích của eWOM (HI), số lượng eWOM (SL), chuyên môn người gửi eWOM (CM) cho thấy các nhân tố đều có ảnh hưởng cùng chiều đến ý định mua tour du lịch nước ngoài (YD) của khách hàng và có ý nghĩa về mặt thống kê (Sig< 0,05). Hệ số VIF nằm trong khoảng từ 1 đến 2 điều này chứng tỏ đa cộng tuyến giữa các biến độc lập và rất nhỏ, chính vì vậy mô hình hồi
quy có thể chấp nhận được. Phương trình được rút ra từ kết quả trên:
YD=0,434 + 0,252*CL + 0,170*TC + 0,144*HI +0,144*SL + 0,159*CM
Hay
Ý định mua tour du lịch = 0,434 + 0,252 * chất lượng eWOM + 0,170 * độ tin cậy eWOM + 0,144* tính hữu ích của eWOM + 0,144 * số lượng eWOM + 0,159 * chuyên môn của người gửi eWOM
4.4.2.5 Kiểm định giả thuyết
Có tất cả 5 biến phụ thuộc và 1 biến độc lập được đưa vào mô hình nghiên cứu, trong đó có 5 giả thuyết được đưa ra. Qua các bước phân tích thống kê, kết quả hồi quy cho thấy tất cả các biến độc lập đều có sự tác động cùng chiều đến biến phụ thuộc trong mô hình nghiên cứu. Đồng thời các biến độc lập giải thích được 50,6 % biến phụ thuộc. Các giả thuyết nghiên cứu được kiểm định lần lượt như sau:
Giả thuyết H1: Chất lượng eWOM tác động cùng chiều đến ý định chọn tour du lịch. Biến CL – “chất lượng eWOM” có giá trị sig. = 0,000 < 0,05, điều này có nghĩa là nhân tố chất lượng eWOM có ảnh hưởng đến ý định lực chọn tour du lịch của khách hàng, nên giả thuyết H1 được chấp nhận. Hệ số hồi quy β (bằng 0,252) dương có nghĩa là chất lượng eWOM tác động cùng chiều đến biến phụ thuộc và cao thứ nhất trong năm biến, chứng tỏ nhân tố này quan trọng nhất trong 5 biến được đưa vào mô hình nghiên
cứu (kết quả phù hợp với nghiên cứu của Abdallah Q. Bataineh, 2015)
Giả thuyết H2: Độ tin cậy của eWOM có tác động cùng chiều đến ý định lựa chọn tour du lịch.
Biến TC – “độ tin cậy eWOM” có giá trị sig. = 0,000 < 0,05 suy ra yếu tố độ tin cậy eWOM có ảnh hưởng đến ý định lựa chọn tour du lịch của khách hàng. Hệ số có β có giá trị là 0,170 giá trị dương chứng tỏ TC tác động cùng chiều đến biến phụ thuộc. Đồng thời giá trị β đứng thứ hai trong 5 biến cho thấy TC có độ quan trọng thứ hai về tầm ảnh hưởng đối với biến phụ thuộc.
Giả thuyết H3: Tính hữu ích của eWOM có tác động cùng chiều đến ý định lựa chọn tour du lịch.
Thông qua kết quả phân tích hồi quy biến HI có hệ số sig. = 0,000 < 0,05 nên giả thuyết H3 được chấp nhận. Giá trị β của yếu tố tính hữu ích là 0,144 lớn thứ tư trong