3.2.2. Dynamic panel Generalized Method of Moments
This study applies the two-step dynamic panel data approach suggested by Arellano and Bover (1995) and Blundell and Bond (2000) and also uses dynamic panel GMM technique to address potential endogeneity, heteroskedasticity, and autocorrelation problems in the data. By using GMM estimation, it allows for instrumenting of the endogenous variables and provides consistent estimates. The paper use the lags of right hand side variables in the equations as instruments. In this estimation, the Hansen J-test is used to test the validity of instrument sets and the Arellano-Bond test is applied to check the absence of second-order serial correlation in the first differenced residuals.
3.3. Descriptions of Data
This study analyzes a panel dataset comprising 34 Vietnamese commercial banks over the period 2005–2015. The panel data set is extracted from non-consolidated income statements and balance sheets of these banks. Among 34 commercial banks, there 5 State owned banks and 29 joint stock commercial banks. The sample size of 34 out of 35 joint stock banks is now representative of the JSBs in Vietnam. The macroeconomic data come from IMF – IFS website.
3.4. Summary
This research applies GMM panel model to examine the factors affecting NPLs and the impact of NPLs on the efficiency, capital adequacy and credit growth of the commercial banks in Vietnam. The thesis also measures cost effectiveness by DEA method. With the models and data presented in this section, the next chapter uses the above models to present empirical research.
CHAPTER 4. EMPIRICAL EVIDENCES FROM VIETNAM
4.1. Descriptive statistics
The data used in the GMM model is arranged in panel data. Statistical description is presented in Table 4.1.
Table 4.1. Descriptive statistics of variables
Trung bình | Giá trị nhỏ nhất | Giá trị lớn nhất | Độ lệch chuẩn | Số quan sát | |
NPL | 2.172 | 0.000 | 14.856 | 1.683 | 357 |
ROA | 1.137 | 0.000 | 4.19 | 0.799 | 357 |
CE | 0.693 | 0.228 | 1 | 0.233 | 357 |
TA | 17.343 | 11.884 | 20.562 | 1.648 | 357 |
LGR | 53.375 | -40.811 | 1131.728 | 109.780 | 357 |
ETA | 12.566 | 0.514 | 71.206 | 9.971 | 357 |
LDR | 66.910 | 15.333 | 206.2 | 27.322 | 357 |
LLR | 1.150 | 0.000 | 3.885 | 0.715 | 357 |
HHI | 0.099 | 0.0715 | 0.170602 | 0.0306 | 357 |
CR4 | 0.561 | 0.456 | 0.796148 | 0.105 | 357 |
GDP | 6.304 | 5.250 | 8.440 | 0.913 | 357 |
INF | 9.501 | 0.630 | 23.120 | 5.978 | 357 |
LNEXI | 9.823 | 9.671 | 9.984 | 0.123 | 357 |
IR | 11.878 | 7.500 | 16.95 | 2.700 | 357 |
ESI | 9.584 | -1.620 | 20.5 | 6.519 | 357 |
Có thể bạn quan tâm!
- Kết Quả Ước Lượng Các Yếu Tố Tác Động Đến Nợ Xấu Ngân Hàng Thương Mại Việt Nam
- Ước Lượng Gmm Tác Động Của Nợ Xấu Đến Tttd
- Literature Review On The Impact Of Non-Performing Loans On Bank Behavior
- Nợ xấu của hệ thống ngân hàng thương mại Việt Nam 1683995359 - 35
Xem toàn bộ 285 trang tài liệu này.
Source: financial report of Vietnamese commercial banks, own estimations
Table 4.2. Testing the stationary by Fisher với lag=1
ADF Test | PP Test | |||
Prb>chi 2 | Prb>chi 2 | |||
No trend | Trend | No trend | Trend | |
NPL | 0,000*** | 0,000*** | 0,000*** | 0,002*** |
GDP | 0,026** | 1,000 | 0,000*** | 0,998 |
IR | 0,888 | 0,990 | 0,188 | 1,000 |
∆.IR | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
EXI | 0,000*** | 0,241 | 0,915 | 1,000 |
ESI | 0,691 | 0,002*** | 0,003** | 0,575 |
HHI | 0,000*** | 1,000 | 0,000*** | 1,000 |
INF | 0,020** | 0,880 | 0,000*** | 0,013 |
ROA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
CE | 0,021** | 0,000*** | 0,000*** | 0,000*** |
LDR | 0,002*** | 0,007*** | 0,000*** | 0,000*** |
LGR | 0,602 | 0,000*** | 0,000*** | 0,000*** |
ETA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
TA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
LLR | 0,831 | 0,327 | 0,449 | 0,418 |
∆.LLR | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
***, **, * * and ** denote significance at the 10 %, 5 %and 1% levels. Source: own estimations
Results of testing the stationary and cointegration of variables in Table 4.2 and 4.3. In the study model, all independent variables are co-dependent with the dependent variable.
Table 4.3. Westerlund panel cointegration test
Gt | Gα | Pt | Pα | |
Biến phụ thuộc:NPL | ||||
Các biến độc lập | ||||
GDP | 0,000*** | 0,000*** | 0,000*** | 0,106 |
IR | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
EXI | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
ESI | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
INF | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
HHI | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
ROA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
CE | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
LDR | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
LGR | 0,000*** | 0,000*** | 0,000*** | 0,122 |
ETA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
TA | 0,000*** | 0,000*** | 0,000*** | 0,000*** |
LLR | 0,000*** | 0,000*** | 0,000*** | 0,988 |
***, **, * * and ** denote significance at the 10 %, 5 %and 1% levels. Source: own estimation
4.2. Estimation results for determinants of non-performing loans in Vietnam
The estimation results for the determinant of NPLs of Vietnamese commercial banks are presented in Table 4.4.
Table 4.4. GMM estimation results for the determinant of NPLs of Vietnamese banks
Model 1 | Model 2 | Model 3 | Model 4 | |
L.NPL | 0,3312*** (0,0042) | 0,3801*** (0,0045) | 0,3033*** (0,0182) | 0,4147*** (0,0225) |
Bank-specific characteristics | ||||
ROA | -0,2335*** (0,0104) | -0,4860*** (0,0121) | -0,2680*** (0,0887) | -0,2665** (0,0196) |
CE | -0,1649** (0,1778) | -0,1908** (0,2011) | -0,2510** (0,1893) | -0,2680* (0,2582) |
ETA | -0,0227*** (0,0060) | -0,0098* (0,0073) | -0,0270** (0,0114) | -0,1053*** (0,0214) |
LGR | -0,0018*** (0,0003) | -0,0012*** (0,0002) | -0,0005*** (0,0064) | -0,0047*** (0,0014) |
TA | 0,1405** (0,065) | 0,1146* (0,1078) | 0,0968** (0,3987) | 0,3664*** (0,1802) |
LDR | -0,0044*** (0,0016) | -0,0016*** (0,0064) | -0,0018* (0,0008) | -0,0034* (0,0031) |
LLR | 0,0111*** (0,004) | 0,0192** (0,0021) | 0,093*** (0,0160) | 0,0219*** (0,0117) |
Own1 | - 0,1158*** (0,4256) | |||
Own2 | 0,0605*** (0,6212) | |||
Own3 | 0,0347** (0,0899) | |||
Industry competition | ||||
HHI | -0,553*** (0,2428) | |||
CR4 | -0,628* (0,9957) | -0,273** (0,0738) | -0,5421*** (0,1367) | |
Macroeconomic variables | ||||
GDP | -0,399*** (0,0708) | -0,3931*** (0,0624) | -0,4589*** (0,0545) | -0,7546*** (0,0462) |
INF | 0,0188** (0,0061) | 0,0447*** (0,0054) | ||
EXI | 0,2059*** (0,4102) | 0,3210*** (0,4019) | 0,5124*** (0,1103) | 0,4397*** (0,1217) |
IR | 0,1083*** (0,0204) | |||
ESI | 0,0683*** (0,0038) |
-0,6293*** (0,0110) | -1,774*** (0,0257) | -0,5672*** (0,4357) | -1,4959*** (0,3802) | |
Obs. | 323 | 323 | 323 | 323 |
No. of banks | 34 | 34 | 34 | 34 |
No. of instruments | 19 | 22 | 23 | 21 |
Pro>chi2 | 0,000 | 0,000 | 0,000 | 0,000 |
Hansen test | 0,488 | 0,574 | 0,559 | 0,625 |
AR(1) | 0,009 | 0,031 | 0,015 | 0,008 |
AR(2) | 0,594 | 0,775 | 0,535 | 0,612 |
***, **, * * and ** denote significance at the 10 %, 5 %and 1% levels, respectively5% và 10%. Standard errors in parentheses. Source: own estimations
Our findings indicate that factors such as bank efficiency, equity, credit growth and economic growth are the main factors that have a significant and negatively related to NPLs of Vietnamese commercial banks. Meanwhile, lagged NPLs, bank size, loans to deposit, capital and inflation, exchange rates, interest rates and real estate prices have the significant and positive impact on NPLs.
4.4. Estimation results for impact of non-performing loans on bank behavior
4.4.1. Estimation results for impact of non-performing loans on bank performance efficiency
The results of Table 4.5 show the significant impact of NPLs on bank performance and support the hypothesis developed in Chapter 3: The rising of NPLs reduces cost efficiency as well as profitability of banks.
Table 4.5. GMM estimation results for impact of NPLs on bank performance efficiency
ROA | CE | |||
Model 1 | Model 2 | Model 3 | Model 4 | |
L.ROA | 0,2432*** (0,0302) | 0,2542*** (0,0347) | ||
L.CE | 0,2997*** (0,0968) | 0,372*** (0,0251) | ||
Bank-specific characteristics | ||||
NPL | -0,1579*** (0,0331) | -0,1904*** (0,0315) | -0,1221* (0,0343) | - 0,1803*** (0,0427) |
ETA | 0,0117*** (0,0033) | 0,0061** (0,0332) | -0,0118*** (0,0032) | - 0,0186*** (0,0202) |
LGR | 0,0019*** (0,0005) | 0,0006** (0,0005) | 0,0051** (0,0002) | 0,0053** (0,0008) |
TA | -0,2989** (0,0606) | -0,3067** (0,0699) | 0,0315*** (0,0366) | 0,0781*** (0,2306) |
LDR | 0,0009*** (0,0020) | 0,0008* (0,0002) | 0,0004*** (0,0000) | 0,0046*** (0,0027) |
0,1079** (0,4648) | -0,2425** (0,1319) | |||
Own2 | -0,0896* (0,1395) | 0,1946*** (0,0874) | ||
Own3 | -0,0736* (0,3354) | 0,0237** (0,2619) | ||
HHI | 0,2264*** (0,0321) | 0,319** (0,1922) | ||
CR4 | 0,4198*** (0,3381) | 0,1292*** (0,7801) | ||
Macroeconomic variables | ||||
GDP | 0,0323*** (0,0187) | 0,0432*** (0,0279) | 0,0441*** (0,0188) | 0,0639*** (0,0387) |
INF | 0,0004*** (0,0022) | 0,0005 (0,0030) | 0,0229* (0014) | 0,0003*** (0,0045) |
LNER | 0,1456** (0,0251) | 0,2721** (0,3026) | -0,11607*** (0,0329) | - 0,1473*** (0,2446) |
CONS. | -1,248*** (0,096) | -0,5806*** (0,2319) | -0,7255** (0,5712) | -0,7714 (0,6018) |
Obs. | 323 | 323 | 323 | 323 |
No. of banks | 34 | 34 | 34 | 34 |
No. of instruments | 22 | 24 | 22 | 22 |
Pro>chi2 | 0,000 | 0,000 | 0,000 | 0,000 |
Hansen test | 0,503 | 0,304 | 0,456 | 0,46 |
AR(1) | 0,007 | 0,016 | 0,005 | 0,002 |
AR(2) | 0,390 | 0,242 | 0,742 | 0,627 |
***, **, * * and ** denote significance at the 10 %, 5 %and 1% levels, respectively5% và 10%. Standard errors in parentheses. Source: own estimations.
4.4.2. Estimation results for impact of non-performing loans on capital adequacy
Our findings show that there is a negative coefficient of NPLs and ETA and be significant. This result supports the bank lending channel theories. The result is also consistent with Lee and Hsieh (2013), Le (2016) and Alfon (2005).
Table 4.6. GMM estimation results for impact of NPLs on capital edequacy
Model 1 | Model 2 | |
L.ETA | 0,3906*** (0,0945) | 0,3314*** (0,0863) |
Bank-specific characteristics | ||
NPL | -0,1812*** (0,2499) | -0,1750*** (0,2461) |
ROA | 0,1718*** (0,7270) | 0,1061*** (0,7523) |
CE | -0,1659*** (0,1013) | -0,1035*** (0,1232) |
LGR | 0,0174*** (0,0024) | 0,0147*** (0,0027) |
TA | -0,2680*** (0,5645) | -0,3767*** (0,7296) |
LDR | 0,0025*** (0,0000) | 0,0031*** (0,0000) |
OWN1 | 0,2002** (0,5815) | |
OWN2 | -0,2564*** (0,7532) | |
OWN3 | -0,1227* (0,1062) | |
Industry Competition | ||
HHI | 0,4246*** (0,1109) | |
CR4 | 0,1235*** (0,4785) | |
Macroeconomic variables | ||
GDP | 0,1574** (0,2140) | 0,1899*** (0,2273) |
INF | 0,0172*** (0,0227) | 0,0042*** (0,0235) |
LnER | -0,1162** (0,2879) | -0,1405** (0,5816) |
CONS | -0,6528*** (0,2772) | -0,6840** (0,3112) |
Obs. | 323 | 323 |
No. of banks | 34 | 34 |
No. of instruments | 25 | 27 |