Với Độ Dài Dãy Bit Z = 3, Cây Tìm Kiếm Cơ Số Gồm Các Khoá 2, 4, 5 Và Sau Khi Thêm Giá Trị 7

Về mặt trung bình, các thao tác tìm kiếm, chèn, xoá trên cây tìm kiếm số học đều có độ phức tạp là O(log2n) còn trong trường hợp xấu nhất, độ phức tạp của các thao tác đó là O(z), bởi cây tìm kiếm số học có chiều cao không quá z + 1.

9.8. CÂY TÌM KIẾM CƠ SỐ (RADIX SEARCH TREE - RST)

Trong cây tìm kiếm số học, cũng như cây nhị phân tìm kiếm, phép tìm kiếm tại mỗi bước phải so sánh giá trị khoá X với giá trị lưu trong một nút của cây. Trong trường hợp các khoá có cấu trúc lớn, việc so sánh này có thể mất nhiều thời gian.

Cây tìm kiếm cơ số là một phương pháp khắc phục nhược điểm đó, nội dung của nó có thể tóm tắt như sau:

Trong cây tìm kiếm cơ số là một cây nhị phân, chỉ có nút lá chứa giá trị khoá, còn giá trị chứa trong các nút nhánh là vô nghĩa. Các nút lá của cây tìm kiếm cơ số đều nằm ở mức z + 1.

Đối với nút gốc của cây tìm kiếm cơ số, nó có tối đa hai nhánh con, mọi khoá chứa trong nút lá của nhánh con trái đều có bit cao nhất là 0, mọi khoá chứa trong nút lá của nhánh con phải đều có bit cao nhất là 1.

Đối với hai nhánh con của nút gốc, vấn đề tương tự với bit thứ z - 2, ví dụ với nhánh con trái của nút gốc, nó lại có tối đa hai nhánh con, mọi khoá chứa trong nút lá của nhánh con trái đều có bit thứ z - 2 là 0 (chúng bắt đầu bằng hai bit 00), mọi khoá chứa trong nút lá của nhánh con phải đều có bit thứ z - 2 là 1 (chúng bắt đầu bằng hai bit 01)…

0

1

0

1

0

1

1

0

1

0

1

0

0

0

1

1

0

0

1

0

Tổng quát với nút ở mức d, nó có tối đa hai nhánh con, mọi nút lá của nhánh con trái chứa khoá có bit z - d là 0, mọi nút lá của nhánh con phải chứa khoá có bit thứ z - d là 1 (Hình 44).


2

4

5

7

8

10

11

12

0010

0100

0101

0111

1000

1010

1011

1100

Có thể bạn quan tâm!

Xem toàn bộ 316 trang tài liệu này.

Giải thuật và lập trình - 18


Hình 44: Cây tìm kiếm cơ số


Khác với cây nhị phân tìm kiếm hay cây tìm kiếm số học. Cây tìm kiếm cơ số được khởi tạo gồm có một nút gốc, và nút gốc tồn tại trong suốt quá trình sử dụng: nó không bao giờ bị xoá đi cả.

Để tìm kiếm một giá trị X trong cây tìm kiếm cơ số, ban đầu ta đứng ở nút gốc và duyệt dãy bit của X từ trái qua phải (từ bit z - 1 đến bit 0), gặp bit bằng 0 thì rẽ sang nút con trái còn gặp bit bằng 1 thì rẽ sang nút con phải, cứ tiếp tục như vậy cho tới khi một trong hai tình huống sau xảy ra:

Hoặc đi tới một nút rỗng (do rẽ theo liên kết nil) quá trình tìm kiếm thất bại do X không có trong RST

Hoặc đã duyệt hết dãy bit của X và đang đứng ở một nút lá, quá trình tìm kiếm thành công vì chắc chắn nút lá đó chứa giá trị đúng bằng X.

{Hàm tìm kiếm trên cây tìm kiếm cơ số, nó trả về nút lá chứa khoá tìm kiếm X nếu tìm thấy, trả về nil nếu không tìm thấy. z là độ dài dãy bit biểu diễn một khoá}

function RSTSearch(X: TKey): PNode; var

b: Integer; p: PNode;

begin

b := z; p := Root; {Bắt đầu với nút gốc, đối với RST thì gốc luôn có sẵn}

repeat

b := b - 1; {Xét bit b của X}

if <Bit b của X là 0> then p := p^.Left {Gặp 0 rẽ trái}

else p := p^.Right; {Gặp 1 rẽ phải}

until (p = nil) or (b = 0); RSTSearch := p;

end;

Thao tác chèn một giá trị X vào RST được thực hiện như sau: Đầu tiên, ta đứng ở gốc và

duyệt dãy bit của X từ trái qua phải (từ bit z - 1 về bit 0), cứ gặp 0 thì rẽ trái, gặp 1 thì rẽ phải. Nếu quá trình rẽ theo một liên kết nil (đi tới nút rỗng) thì lập tức tạo ra một nút mới, và nối vào theo liên kết đó để có đường đi tiếp. Sau khi duyệt hết dãy bit của X, ta sẽ dừng lại ở một nút lá của RST, và công việc cuối cùng là đặt giá trị X vào nút lá đó.

Ví dụ:


0

1

1

0

0

0

1

2

4

5

0

1

1

0

1

0

0

1

1

2

4

5

7

010 101 101

010 101 101

111


Hình 45: Với độ dài dãy bit z = 3, cây tìm kiếm cơ số gồm các khoá 2, 4, 5 và sau khi thêm giá trị 7


{Thủ tục chèn khoá X vào cây tìm kiếm cơ số}

procedure RSTInsert(X: TKey); var

b: Integer; p, q: PNode;

begin

b := z; p := Root; {Bắt đầu từ nút gốc, đối với RST thì gốc luôn nil}

repeat

b := b - 1; {Xét bit b của X}

q := p; {Khi p chạy xuống nút con thì q^ luôn giữ vai trò là nút cha của p^}

if <Bit b của X là 0> then p := p^.Left {Gặp 0 rẽ trái}

else p := p^.Right; {Gặp 1 rẽ phải}

if p = nil then {Không đi được thì đặt thêm nút để đi tiếp}

begin

New(p); {Tạo ra một nút mới và đem p trỏ tới nút đó}

p^.Left := nil; p^.Right := nil;

if <Bit b của X là 0> then q^.Left := p {Nối p^ vào bên trái q^}

else q^.Right := p; {Nối p^ vào bên phải q^}

end; until b = 0;

p^.Info := X; {p^ là nút lá để đặt X vào}

end;

Với cây tìm kiếm cơ số, việc xoá một giá trị khoá không phải chỉ là xoá riêng một nút lá mà

còn phải xoá toàn bộ nhánh độc đạo đi tới nút đó để tránh lãng phí bộ nhớ (Hình 46).


0

1

1

0

1

0

0

1

1

2

4

5

7

0

1

1

0

0

0

1

2

4

5

010 101 101

111

010 101 101


Hình 46: RST chứa các khoá 2, 4, 5, 7 và RST sau khi loại bỏ giá trị 7


Ta lặp lại quá trình tìm kiếm giá trị khoá X, quá trình này sẽ đi từ gốc xuống lá, tại mỗi bước đi, mỗi khi gặp một nút ngã ba (nút có cả con trái và con phải - nút cấp hai), ta ghi nhận lại ngã ba đó và hướng rẽ. Kết thúc quá trình tìm kiếm ta giữ lại được ngã ba đi qua cuối cùng, từ nút đó tới nút lá chứa X là con đường độc đạo (không có chỗ rẽ), ta tiến hành dỡ bỏ tất cả các nút trên đoạn đường độc đạo khỏi cây tìm kiếm cơ số. Để không bị gặp lỗi khi cây suy biến (không có nút cấp 2) ta coi gốc cũng là nút ngã ba


{Thủ tục xoá khoá X khỏi cây tìm kiếm cơ số}

procedure RSTDelete(X: TKey); var

b: Integer;

p, q, TurnNode, Child: PNode; begin

{Trước hết, tìm kiếm giá trị X xem nó nằm ở nút nào}

b := z; p := Root; repeat

b := b - 1;

q := p; {Mỗi lần p chuyển sang nút con, ta luôn đảm bảo cho q^ là nút cha của p^}

if <Bit b của X là 0> then p := p^.Left else p := p^.Right;

if (b = z - 1) or (q^.Left nil) and (q^.Right nil) then {q^ là nút ngã ba}

begin

TurnNode := q; Child := p; {Ghi nhận lại q^ và hướng rẽ}

end;

until (p = nil) or (b = 0);

if p = nil then Exit; {X không tồn tại trong cây thì không xoá được}

{Trước hết, cắt nhánh độc đạo ra khỏi cây}

if TurnNode^.Left = Child then TurnNode^.Left := nil else TurnNode^.Right := nil

p := Child; {Chuyển sang đoạn đường độc đạo, bắt đầu xoá}

repeat

q := p;

{Lưu ý rằng p^ chỉ có tối đa một nhánh con mà thôi, cho p trỏ sang nhánh con duy nhất nếu có}

if p^.Left nil then p := p^.Left else p := p^.Right;

Dispose(q); {Giải phóng bộ nhớ cho nút q^}

until p = nil; end;

Ta có một nhận xét là: Hình dáng của cây tìm kiếm cơ số không phụ thuộc vào thứ tự chèn

các khoá vào mà chỉ phụ thuộc vào giá trị của các khoá chứa trong cây.

Đối với cây tìm kiếm cơ số, độ phức tạp tính toán cho các thao tác tìm kiếm, chèn, xoá trong trường hợp xấu nhất cũng như trung bình đều là O(z). Do không phải so sánh giá trị khoá dọc đường đi, nó nhanh hơn cây tìm kiếm số học nếu như gặp các khoá cấu trúc lớn. Tốc độ như vậy có thể nói là tốt, nhưng vấn đề bộ nhớ khiến ta phải xem xét: Giá trị chứa trong các nút nhánh của cây tìm kiếm cơ số là vô nghĩa dẫn tới sự lãng phí bộ nhớ.

Một giải pháp cho vấn đề này là: Duy trì hai dạng nút trên cây tìm kiếm cơ số: Dạng nút nhánh chỉ chứa các liên kết trái, phải và dạng nút lá chỉ chứa giá trị khoá. Cài đặt cây này trên một số ngôn ngữ định kiểu quá mạnh đôi khi rất khó.

Giải pháp thứ hai là đặc tả một cây tương tự như RST, nhưng sửa đổi một chút: nếu có nút lá chứa giá trị X được nối với cây bằng một nhánh độc đạo thì cắt bỏ nhánh độc đạo đó, và thay vào chỗ nhánh này chỉ một nút chứa giá trị X. Như vậy các giá trị khoá vẫn chỉ chứa trong các nút lá nhưng các nút lá giờ đây không chỉ nằm trên mức z + 1 mà còn nằm trên những mức khác nữa. Phương pháp này không những tiết kiệm bộ nhớ hơn mà còn làm cho quá trình tìm kiếm nhanh hơn. Giá phải trả cho phương pháp này là thao tác chèn, xoá khá phức tạp. Tên của cấu trúc dữ liệu này là Trie (Trie chứ không phải Tree) tìm kiếm cơ số.


0

1

0

1

0

1

1

0

1

0

1

0

0

0

1

1

0

0

1

0

2

4

5

7

8

10

11

12

a)


0

1

0

1

0

1

2

12

0

1

0

1

7

8

0

1

0

1

4

5

10

11

b)


Hình 47: Cây tìm kiếm cơ số a) và Trie tìm kiếm cơ số b)


Tương tự như phương pháp sắp xếp bằng cơ số, phép tìm kiếm bằng cơ số không nhất thiết phải chọn hệ cơ số 2. Ta có thể chọn hệ cơ số lớn hơn để có tốc độ nhanh hơn (kèm theo sự tốn kém bộ nhớ), chỉ lưu ý là cây tìm kiếm số học cũng như cây tìm kiếm cơ số trong trường hợp này không còn là cây nhị phân mà là cây R_phân với R là hệ cơ số được chọn.

Trong các phương pháp tìm kiếm bằng cơ số, thực ra còn một phương pháp tinh tuý và thông minh nhất, nó có cấu trúc gần giống như cây nhưng không có nút dư thừa, và quá trình duyệt bit của khoá tìm kiếm không phải từ trái qua phải mà theo thứ tự của các bit kiểm soát lưu tại mỗi nút đi qua. Phương pháp đó có tên gọi là Practical Algorithm To Retrieve Information Coded In Alphanumeric (PATRICIA) do Morrison đề xuất. Tuy nhiên, việc cài đặt phương pháp này khá phức tạp (đặc biệt là thao tác xoá giá trị khoá), ta có thể tham khảo nội dung của nó trong các tài liệu khác.


9.9. NHỮNG NHẬN XÉT CUỐI CÙNG

Tìm kiếm thường là công việc nhanh hơn sắp xếp nhưng lại được sử dụng nhiều hơn. Trên đây, ta đã trình bày phép tìm kiếm trong một tập hợp để tìm ra bản ghi mang khoá đúng bằng khoá tìm kiếm. Tuy nhiên, người ta có thể yêu cầu tìm bản ghi mang khoá lớn hơn hay nhỏ hơn khoá tìm kiếm, tìm bản ghi mang khoá nhỏ nhất mà lớn hơn khoá tìm kiếm, tìm bản ghi mang khoá lớn nhất mà nhỏ hơn khoá tìm kiếm v.v… Để cài đặt những thuật toán nêu trên cho những trường hợp này cần có một sự mềm dẻo nhất định.

Cũng tương tự như sắp xếp, ta không nên đánh giá giải thuật tìm kiếm này tốt hơn giải thuật tìm kiếm khác. Sử dụng thuật toán tìm kiếm phù hợp với từng yêu cầu cụ thể là kỹ năng của người lập trình, việc cài đặt cây nhị phân tìm kiếm hay cây tìm kiếm cơ số chỉ để tìm kiếm trên vài chục bản ghi chỉ khẳng định được một điều rõ ràng: không biết thế nào là giải thuật và lập trình.

Bài tập

Bài 1

Hãy thử viết một chương trình SearchDemo tương tự như chương trình SortDemo trong bài trước. Đồng thời viết thêm vào chương trình SortDemo ở bài trước thủ tục TreeSort và đánh giá tốc độ thực của nó.

Bài 2

Tìm hiểu các phương pháp tìm kiếm ngoài, cấu trúc của các B_cây Bài 3

Tìm hiểu các phương pháp tìm kiếm chuỗi, thuật toán BRUTE-FORCE, thuật toán KNUTH- MORRIS-PRATT, thuật toán BOYER-MOORE và thuật toán RABIN-KARP

Tuy gọi là chuyên đề về "Cấu trúc dữ liệu và giải thuật" nhưng thực ra, ta mới chỉ tìm hiểu qua về hai dạng cấu trúc dữ liệu hay gặp là danh sách và cây, cùng với một số thuật toán mà "đâu cũng phải có" là tìm kiếm và sắp xếp. Không một tài liệu nào có thể đề cập tới mọi cấu trúc dữ liệu và giải thuật bởi chúng quá phong phú và liên tục được bổ sung. Những cấu trúc dữ liệu và giải thuật không "phổ thông" lắm như lý thuyết đồ thị, hình học, v.v… sẽ được tách ra và sẽ được nói kỹ hơn trong một chuyên đề khác.

Việc đi sâu nghiên cứu những cấu trúc dữ liệu và giải thuật, dù chỉ là một phần nhỏ hẹp cũng nảy sinh rất nhiều vấn đề hay và khó, như các vấn đề lý thuyết về độ phức tạp tính toán, vấn đề NP_đầy đủ v.v… Đó là công việc của những nhà khoa học máy tính. Nhưng trước khi trở thành một nhà khoa học máy tính thì điều kiện cần là phải biết lập trình. Vậy nên khi tìm hiểu bất cứ cấu trúc dữ liệu hay giải thuật nào, nhất thiết ta phải cố gắng cài đặt bằng được. Mọi ý tưởng hay sẽ chỉ là bỏ đi nếu như không biến thành hiệu quả, thực tế là như vậy.


PHẦN 3. QUY HOẠCH ĐỘNG


Các thuật toán đệ quy có ưu điểm dễ cài đặt, tuy nhiên do bản chất của quá trình đệ quy, các chương trình này thường kéo theo những đòi hỏi lớn về không gian bộ nhớ và một khối lượng tính toán khổng lồ.

Quy hoạch động (Dynamic programming) là một kỹ thuật nhằm đơn giản hóa việc tính toán các công thức truy hồi bằng cách lưu trữ toàn bộ hay một phần kết quả tính toán tại mỗi bước với mục đích sử dụng lại. Bản chất của quy hoạch động là thay thế mô hình tính toán “từ trên xuống” (Top-down) bằng mô hình tính toán “từ dưới lên” (Bottom-up).

Từ “programming” ở đây không liên quan gì tới việc lập trình cho máy tính, đó là một thuật ngữ mà các nhà toán học hay dùng để chỉ ra các bước chung trong việc giải quyết một dạng bài toán hay một lớp các vấn đề. Không có một thuật toán tổng quát để giải tất cả các bài toán quy hoạch động.

Mục đích của phần này là cung cấp một cách tiếp cận mới trong việc giải quyết các bài toán tối ưu mang bản chất đệ quy, đồng thời đưa ra các ví dụ để người đọc có thể làm quen và hình thành các kỹ năng trong việc tiếp cận các bài toán quy hoạch động.


§1. CÔNG THỨC TRUY HỒI


1.1. VÍ DỤ

Cho số tự nhiên n 100. Hãy cho biết có bao nhiêu cách phân tích số n thành tổng của dãy các số nguyên dương, các cách phân tích là hoán vị của nhau chỉ tính là một cách.

Ví dụ: n = 5 có 7 cách phân tích:

1. 5 = 1 + 1 + 1 + 1 + 1

2. 5 = 1 + 1 + 1 + 2

3. 5 = 1 + 1 + 3

4. 5 = 1 + 2 + 2

5. 5 = 1 + 4

6. 5 = 2 + 3

7. 5 = 5

(Lưu ý: n = 0 vẫn coi là có 1 cách phân tích thành tổng các số nguyên dương (0 là tổng của dãy rỗng))

Để giải bài toán này, trong chuyên mục trước ta đã dùng phương pháp liệt kê tất cả các cách phân tích và đếm số cấu hình. Bây giờ ta thử nghĩ xem, có cách nào tính ngay ra số lượng các cách phân tích mà không cần phải liệt kê hay không ?. Bởi vì khi số cách phân tích tương đối lớn, phương pháp liệt kê tỏ ra khá chậm. (n = 100 có 190569292 cách phân tích).

Nhận xét:

Nếu gọi F[m, v] là số cách phân tích số v thành tổng các số nguyên dương m. Khi đó: Các cách phân tích số v thành tổng các số nguyên dương m có thể chia làm hai loại:

Loại 1: Không chứa số m trong phép phân tích, khi đó số cách phân tích loại này chính là số cách phân tích số v thành tổng các số nguyên dương < m, tức là số cách phân tích số v thành tổng các số nguyên dương m - 1 và bằng F[m - 1, v].

Loại 2: Có chứa ít nhất một số m trong phép phân tích. Khi đó nếu trong các cách phân tích loại này ta bỏ đi số m đó thì ta sẽ được các cách phân tích số v - m thành tổng các số nguyên dương m (Lưu ý: điều này chỉ đúng khi không tính lặp lại các hoán vị của một cách). Có nghĩa là về mặt số lượng, số các cách phân tích loại này bằng F[m, v - m]

Trong trường hợp m > v thì rõ ràng chỉ có các cách phân tích loại 1, còn trong trường hợp m

v thì sẽ có cả các cách phân tích loại 1 và loại 2. Vì thế: F[m, v] = F[m - 1, v] nếu m > v

F[m, v] = F[m - 1, v] + F[m, v - m] nếu m v

Ta có công thức xây dựng F[m, v] từ F[m - 1, v] và F[m, v - m]. Công thức này có tên gọi là công thức truy hồi đưa việc tính F[m, v] về việc tính các F[m', v'] với dữ liệu nhỏ hơn. Tất nhiên cuối cùng ta sẽ quan tâm đến F[n, n]: Số các cách phân tích n thành tổng các số nguyên dương n.

Xem tất cả 316 trang.

Ngày đăng: 06/02/2024
Trang chủ Tài liệu miễn phí