17. Said M. Elnoubi, Rajendra Singh, Someshwa C.Gupta (1982), “A new frequency channel assignment algorithm in high capacity mobile communication systems”, IEEE Transactions on Vehicular Technology, volume VT-31(3), pp. 125-131.
18. David Everit and David Manfield (1989), “Performance Analysis of Cellular Mobile Communication Systems with Dynamic Channel Assignment”, IEEE Journal on Selected Areas in Communications, volume 7(8), pp. 1172-1180.
19. I.Chih-Lin, Pi-Hui Chao (1993), “Local Packing-Distributed Dynamic Channel Allocation at Cellular Base Station”, Proceedings of IEEE Global Telecommunications Conference (GLOBECOM 93’), part 1, volume 1, pp. 293-301. New York, NY, USA. .
20. I. Chih-Lin, Pi-Hui Chao (1994), “Distributed Dynamic Channel Allocation Algorithms with Adjacent Channel Constraints”, Proceedings of the 1994 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’ 94), volume 1, pp. 169-177, Amsterdam, The Netherlands, .
21. H. Furukawa, Y. Akaiwa (1991), “Channel Segregation: A Distributed Channel Allocation Scheme for Mobile Communication Systems”, IEICE Transactions, volume 74, pp. 949-954.
22. Yoshihiko Akaiwa, Hidehiro Andoh (1993), “Channel Segregation-A Self Organised Dynamic Channel Allocation Method: Application to TDMA/FDMA Microcellular System”, Journal Selected Areas in Communication, volume 11(6), pp. 949-954.
23. Jun Tajima, Kenji Imamura (1988), “A Strategy for Flexble Channel Assigment in Mobile Communication Systems”, IEEE Transactions on Vehicular Technology, volume 37(2), pp. 92-103.
24. Kenvin A. West, Gordon L. Stuber (1994), “An Aggressive Dynamic Channel Assignment Strategy for a Microcellular Environment”, IEEE Transactions on Vehicular Technology, volume 43(4), pp. 1027-1038.
Có thể bạn quan tâm!
- Khối Thực Hiện Quá Trình Mượn/cho Mượn Kênh Và Khóa Kênh.
- Phát Sinh Tập Dữ Liệu Huấn Luyện Và Huấn Luyện Anfis, Nfs, Nfc
- S. W. Halpern (1983), “Reuse Partitioning In Cellular Systems”, Proceeding Of The 1983 33Rd Ieee Vehicular Technology Conference, Pp. 322-327, New York, Ny, Usa.
- Về một phương pháp mới điều khiển mượn, khóa kênh tần số mạng di động tế bào - 17
- Về một phương pháp mới điều khiển mượn, khóa kênh tần số mạng di động tế bào - 18
Xem toàn bộ 149 trang tài liệu này.
25. Nasif Ekiz, Tara Salih, Sibel Küçüköner and Kermal Fidanboylu (2005), “An Overview of Handoff Techniques In Cellular Networks”, Proceedings of World Academy of Science, Engineering and Technology, volume 6.
26. Gregory P. Pollioni (1996), “Trends in Handover Design”, IEEE Communications Magazine, volume 34, pp. 82-90.
27. Nishint D. Tripathi, Jeffrey H Reed and Hugh F. VanLandinoham (1998), “Handoff in Cellular Systems”, IEEE Personal Communications, volume 5, pp. 26-37.
28. Alexe E. Leu and Brian L. Mark (2002), “Modeling and Analysis of Fast Handoff Algorithms for Microcellular Networks”, Proceeding of the 10th IEEE MASCOTS’2002, pp. 321-328.
29. Ozan K. Tonguz, Member, Evsen Yanmaz (2008), “The Mathematical Theory of Dynamic Load Balancing in Cellular Networks”, IEEE Transactions on Mobile Computing, Volume 7(12).
30. Sajal K.Das, Sanjoy K.Sen, Rajeev Jayaram, “A Dynamic Load Balancing Strategy for Channel Assignment Using Selective Borrowing in Cellular Mobile Environment”, Wireless Networks, volume 3, pp. 333-347.
31. Johan Karlsson, Berth Eklundh (1989), “A Cellular Mobile Telephone System with Load Sharing-an enhancement of directory retry”, IEEE Transactions on Communications, volume 37(5), pp. 530-535.
32. Yuhong Zhang, Ezzatollah Salari (2009), “A hybrid channel allocation algorithm with priority to handoff calls in mobile cellular networks”, Computer Communications, pp. 880–887 .
33. B. Kosko (1990), ”Fuzzy entropy and conditioning”, Information Sciences, volume 40(20).
34. Kun-Nyeong Chang, Jong-Tock Kim, Choon-Sik Yim, and Sehun Kim (1998), “An Efficient Borrowing Channel Assignment Scheme for Cellular Mobile Systems”, IEEE Transactions on vehicular technology, volume 47(2).
35. Hua Jiang, Stephen S. Rappaport (1994), “Channel borrowing Without Locking for Sectorized Cellular Communications”, IEEE Transactions on vehicular technology, volume 43(4).
36. L. Ortigoza-Guerrero and D. Lara-Rodriguez (1996), “Dynamic channel assignment strategy for mobile cellular networks based on compact...”, Electronics Letters Online No: 19960938.
37. Harilaos G. Sandalidis, Peter P. Stavroulakis, Joe Rodriguez-Tellez (1999), “Borrowing Channel Assignment Strategies Based on Heuristic Techniques for Cellular Systems” , IEEE Transactions on Neural Networks, volume 10(1).
38. Xiaowen Wu, Kwan L. Yeung,Jianhao Hu (2000), “Efficient Channel Borrowing Strategy for Real-Time Services in Multimedia Wireless Networks”, IEEE Transactions vehicular Technology, volume 49(4) .
39. Dong-Jun Lee, Dong-Ho Cho (2000), ”Performance Analysis of Channel- Borrowing Handoff Scheme Based on User Mobility in CDMA Cellular Systems”, IEEE Transactions on Vehicular Technology, volume 49(6).
40. Somnath Sinha Maha Patra, Kousik Roy, Sarthak Banerjee, Deo Prakash Vidyarthi (2006), “Improved Genetic Algorithm for Channel Allocation with Channel Borrowing in Mobile Computing”, IEEE Transections on Mobile computing, volume 5(7).
41. Sitao Wu, Tommy W. S. Chow, Kai Tat Ng (2006), “Using Cellular Probabilistic Self-Organizing Map in Borrowing Channel Assignment for Patterned Traffic Load”, Neural Processing Letters volume 23, pp. 71–88, Springer .
42. H. Jiang, S.S. Rappaport (1998), “Channel Borrowing Without Locking for Asynchronous Hybrid FDMA/TDMA Cellular Communications”, Wireless Personal Communications, pp. 233–254, Kluwer Academic Publishers.
43. C.Y. Ngo and V.O.K. Li (1998), “Fixed Channel Assignment in Cellular Radio Networks using A Modified Genetic Algorithm”, IEEE Transactions on Vehicular Technology, vol.ume 47(1), pp. 163-72.
44. K.A. Smith (1998), “Genetic Algorithm for The Channel Assignment Problem”, Global Telecommunications Conference, GLOBECOM 1998, volume 4, pp. 2013-2018..
45. R.A. Baloch I. Awan G. Min (2010), “A mathematical model for wireless channel allocation and handoff schemes”, Telecommun Syst 45, pp. 275–287.
46. Enrico Del Re, Romano Fantacci and Luca Ronga (1996), “A Dynamic Channel Allocation Technique based on Hopfield Neural Networks”, IEEE Transaction on Vehicular Technology, volume 45(1), pp. 26-32.
47. Yao-Tien Wang, Jang-Ping Sheu (2006), “Adaptive channel borrowing for quality of service in wireless cellular networks”, International Journal of Communication Systems Int. J. Commun. Syst.
48. Yao-Tien Wang, Jang-Ping Sheu (2004), “A dynamic channel-borrowing approach with fuzzy logic control in distributed cellular networks”, Simulation Modelling ractice and Theory, volume 12, pp. 287–303.
49. Yao-Tien Wang, Kuo-Ming Hung (2007), “A Genetic-Fuzzy Controller for Load Balancing in Wireless Cellular”, Information and Management Sciences, volume 18(4), pp. 467-494.
50. Krzysztof Gajc, Franciszek Seredynski (2008), “Solving Channel Borrowing Problem with Coevolutionary Genetic Algorithms”, PPAM 2007, LNCS 4967, pp. 489– 498, Springer-Verlag Berlin Heidelberg.
51. HUANG Fei, XU Hui, WU Shiqi (2007),“Fairness based channel borrowing strategy in multimedia LEO satellite communications”, Front. Electr. Electron. Eng. China , volume 2(2), pp. 202–208
52. P.T. Tan, C.B. Soh, E. Gunawan (2001), “Dynamic Flow Model for Borrowing Channel Ordering Assignment Scheme in Cellular Mobile Systems”, Wireless Personal Communications, volume 16, pp. 287–306.
53. Roland Zander, Johan M. Karlsson (2005), “Combining Bandwidth Borrowing and Reservation in Cellular Networks”, International Journal of Wireless Information Networks, volume 12(3).
54. Sitao Wu, Tommy W. S. Chow, Kai Tat Ng Kim Fung Tsang (2006), “Improvement of borrowing channel assignment for patterned traffic load by online cellular probabilistic self-organizing map”, Neural Comput & Applic , volume 15, pp. 298–309.
55. Hamid Beigy, M.R. Meybod (2003), “Multi-threshold Guard Channel Policy for Next Generation Wireless Networks”, A. Yazici and C. S¸ener (Eds.): ISCIS 2003, LNCS 2869, pp. 755–762.
56. L. A. Zadeh (1965), “Fuzzy sets”, Information and control, volume 8, pp: 338-353.
57. Amit Mishra, Zaheeruddin (2010), “Design of Fuzzy Neural Network for Function Approximation and classification”, IAENG International Journal of Computer Science, Advance online publication: 23 November 2010.
58. Zsolt Csaba Johanyak, Kecskemet College (2010), “Fuzzy Rule Interpolation based on Subsethood Values”, IEEE 978-1-4244-6588-0/10.
59. Leszek Rutkowski (2005),”Computational intelligence: methods and techniques”,
Polish Scientific Publishers PWN.
PHỤ LỤC
1. Các modul chương trình bộ điều khiển NFS
function depck = depc3(nuyc,nuysig,ck,sigk) gam1=(nuysig*ck-sigk*nuyc)/(nuysig-sigk); gam2=(nuysig*ck+sigk*nuyc)/(nuysig+sigk); depck1=0;
if nuyc==ck
depck1=0;
end
if nuyc>ck
if nuysig==sigk
depck1=2*sqrt(3.14)*exp(-2*((gam2-ck)/sigk)^2)*sqrt(2)/... (nuysig*(1/2-erf(sqrt(2)*(gam2-nuyc)/nuysig))+... sigk*(1/2+erf(sqrt(2)*(gam2-ck)/sigk)))+...
2*(nuysig*(erf(sqrt(2)*(gam2-nuyc)/nuysig)+1/2)+... sigk*(1/2-erf(sqrt(2)*(gam2-ck)/sigk)))/... (nuysig*(1/2-erf(sqrt(2)*(gam2-nuyc)/nuysig))+...
sigk*(1/2+erf(sqrt(2)*(gam2-ck)/sigk)))^2/sqrt(3.14)*... exp(-2*((gam2-ck)/sigk)^2*sqrt(2));
end;
if nuysig>sigk
depck1=sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/... pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk)/nuysig/(1-... erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+... sigk*(erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*(gam1-ck)/sigk)))-... (nuysig*(erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/... nuysig))+sigk*(1+erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*(gam2-ck)/... sigk)))/nuysig/(1-erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*... (gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*... (gam1-ck)/sigk)))^2*sigk*(-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*...
2^(1/2)/sigk+2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk);
...
end;
if nuysig>sigk
depck1=sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/... pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk)/nuysig/... (erf(2^(1/2)*(gam1-nuyc)/nuysig)-erf(2^(1/2)*(gam2-nuyc)/... nuysig)+sigk*(1-erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*...
(gam2-ck)/sigk)))-(nuysig*(1+erf(2^(1/2)*(gam2-nuyc)/nuysig)-... erf(2^(1/2)*(gam1-nuyc)/nuysig))+sigk*(erf(2^(1/2)*(gam1-ck)/sigk)-
erf(2^(1/2)*(gam2-ck)/sigk)))/nuysig/(erf(2^(1/2)*(gam1-nuyc)/... nuysig)-erf(2^(1/2)*(gam2-nuyc)/nuysig)+sigk*(1-erf(2^(1/2)*... (gam1-ck)/sigk)-erf(2^(1/2)*(gam2-ck)/sigk)))^2*sigk*(2/pi^(1/2)*... exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/pi^(1/2)*exp(-2*...
(gam2-ck)^2/sigk^2)*2^(1/2)/sigk); end;
end;
if nuyc<ck
if nuysig==sigk
depck1=-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/(nuysig*(1/2+... erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1/2-erf(2^(1/2)*(gam2-ck)/... sigk)))-2*(nuysig*(1/2-erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1/2+... erf(2^(1/2)*(gam2-ck)/sigk)))/(nuysig*(1/2+erf(2^(1/2)*(gam2-nuyc)/... nuysig))+sigk*(1/2-erf(2^(1/2)*(gam2-ck)/sigk)))^2/pi^(1/2)*...
exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2); end;
if nuysig>sigk
depck1=(1+erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*(gam1-ck)/sigk)+... sigk*(-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)*(gam2-ck)/... sigk^2+2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)*(gam1-ck)/... sigk^2))/nuysig/(1+erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*... (gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*... (gam2-ck)/sigk)))-(nuysig*(erf(2^(1/2)*(gam1-nuyc)/nuysig)-... erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1+erf(2^(1/2)*(gam2-ck)/sigk)-... erf(2^(1/2)*(gam1-ck)/sigk)))/nuysig/(1+erf(2^(1/2)*(gam2-nuyc)/... nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam1-ck)/... sigk)-erf(2^(1/2)*(gam2-ck)/sigk)))^2*(erf(2^(1/2)*(gam1-ck)/sigk)-... erf(2^(1/2)*(gam2-ck)/sigk)+sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/... sigk^2)*2^(1/2)*(gam1-ck)/sigk^2+2/pi^(1/2)*exp(-2*(gam2-ck)^2/... sigk^2)*2^(1/2)*(gam2-ck)/sigk^2));
end;
if nuysig<sigk
depck1=sigk*(-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk+2/... pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk)/nuysig/(erf(2^(1/2)*... (gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*... (gam2-ck)/sigk)+erf(2^(1/2)*(gam1-ck)/sigk)))-(nuysig*(1+erf(2^(1/2)*... (gam1-nuyc)/nuysig)-erf(2^(1/2)*(gam2-
nuyc)/nuysig))+sigk*(erf(2^(1/2)*...
(gam2-ck)/sigk)-erf(2^(1/2)*(gam1-ck)/sigk)))/nuysig/(erf(2^(1/2)*... (gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*... (gam2-ck)/sigk)+erf(2^(1/2)*(gam1-ck)/sigk)))^2*sigk*(-2/pi^(1/2)*... exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk-2/pi^(1/2)*exp(-2*(gam1-ck)^2/... sigk^2)*2^(1/2)/sigk);
end; end;
depck=depck1;
function depck = depc3(nuyc,nuysig,ck,sigk) if nuyc==ck
depck=0;
end
if nuyc>ck
if nuysig==sigk
depck=2*sqrt(3.14)*exp(-2*((gam2-ck)/sigk)^2)*sqrt(2)/... (nuysig*(1/2-erf(sqrt(2)*(gam2-nuyc)/nuysig))+... sigk*(1/2+erf(sqrt(2)*(gam2-ck)/sigk)))+...
2*(nuysig*(erf(sqrt(2)*(gam2-nuyc)/nuysig)+1/2)+... sigk*(1/2-erf(sqrt(2)*(gam2-ck)/sigk)))/... (nuysig*(1/2-erf(sqrt(2)*(gam2-nuyc)/nuysig))+...
sigk*(1/2+erf(sqrt(2)*(gam2-ck)/sigk)))^2/sqrt(3.14)*... exp(-2*((gam2-ck)/sigk)^2*sqrt(2);
end;
if nuysig>sigk
depck=sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/... pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk)/nuysig/(1-... erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+... sigk*(erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*(gam1-ck)/sigk)))-... (nuysig*(erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*(gam1-nuyc)/... nuysig))+sigk*(1+erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*(gam2-ck)/... sigk)))/nuysig/(1-erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*... (gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*... (gam1-ck)/sigk)))^2*sigk*(-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*...
2^(1/2)/sigk+2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk);
...
end;
if nuysig>sigk
depck=sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/... pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/sigk)/nuysig/... (erf(2^(1/2)*(gam1-nuyc)/nuysig)-erf(2^(1/2)*(gam2-nuyc)/... nuysig)+sigk*(1-erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*...
(gam2-ck)/sigk)))-(nuysig*(1+erf(2^(1/2)*(gam2-nuyc)/nuysig)-... erf(2^(1/2)*(gam1-nuyc)/nuysig))+sigk*(erf(2^(1/2)*(gam1-ck)/sigk)-
erf(2^(1/2)*(gam2-ck)/sigk)))/nuysig/(erf(2^(1/2)*(gam1-nuyc)/... nuysig)-erf(2^(1/2)*(gam2-nuyc)/nuysig)+sigk*(1-erf(2^(1/2)*... (gam1-ck)/sigk)-erf(2^(1/2)*(gam2-ck)/sigk)))^2*sigk*(2/pi^(1/2)*... exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)/sigk+2/pi^(1/2)*exp(-2*...
(gam2-ck)^2/sigk^2)*2^(1/2)/sigk); end;
end;
if nuyc<ck
if nuysig==sigk
depck=-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)/(nuysig*(1/2+... erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1/2-erf(2^(1/2)*(gam2-ck)/... sigk)))-2*(nuysig*(1/2-erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1/2+... erf(2^(1/2)*(gam2-ck)/sigk)))/(nuysig*(1/2+erf(2^(1/2)*(gam2-nuyc)/... nuysig))+sigk*(1/2-erf(2^(1/2)*(gam2-ck)/sigk)))^2/pi^(1/2)*...
exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2); end;
if nuysig>sigk
depck=(1+erf(2^(1/2)*(gam2-ck)/sigk)-erf(2^(1/2)*(gam1-ck)/sigk)+... sigk*(-2/pi^(1/2)*exp(-2*(gam2-ck)^2/sigk^2)*2^(1/2)*(gam2-ck)/... sigk^2+2/pi^(1/2)*exp(-2*(gam1-ck)^2/sigk^2)*2^(1/2)*(gam1-ck)/... sigk^2))/nuysig/(1+erf(2^(1/2)*(gam2-nuyc)/nuysig)-erf(2^(1/2)*... (gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam1-ck)/sigk)-erf(2^(1/2)*... (gam2-ck)/sigk)))-(nuysig*(erf(2^(1/2)*(gam1-nuyc)/nuysig)-... erf(2^(1/2)*(gam2-nuyc)/nuysig))+sigk*(1+erf(2^(1/2)*(gam2-ck)/sigk)-... erf(2^(1/2)*(gam1-ck)/sigk)))/nuysig/(1+erf(2^(1/2)*(gam2-nuyc)/... nuysig)-erf(2^(1/2)*(gam1-nuyc)/nuysig)+sigk*(erf(2^(1/2)*(gam1-ck)/... sigk)-erf(2^(1/2)*(gam2-ck)/sigk)))^2*(erf(2^(1/2)*(gam1-ck)/sigk)-... erf(2^(1/2)*(gam2-ck)/sigk)+sigk*(-2/pi^(1/2)*exp(-2*(gam1-ck)^2/... sigk^2)*2^(1/2)*(gam1-ck)/sigk^2+2/pi^(1/2)*exp(-2*(gam2-ck)^2/... sigk^2)*2^(1/2)*(gam2-ck)/sigk^2));
end;