Nghiên cứu tác động của nano bạc và nano sắt lên chất lượng cây giống in vitro ở một số cây trồng có giá trị kinh tế - 17

nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism, Process Biochemistry, 47(4), pp. 651-658.

91. Kumar V., Guleria P., Kumar V., Yadav S.K. (2013), Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana, Science of The Total Environment, 461(1), pp. 462-468.

92. Kumar V., Parvatam G., Ravishankar G.A. (2009), AgNO3: a potential regulator of ethylene activity and plant growth modulator, Electronic Journal of Biotechnology, 12(2), pp. 8-9.

93. Kunitake H., Mii M. (1990), Plant regeneration from cell culture-derived protoplasts of statice (Limonium perezii Hubbard), Plant Science, 70(1), pp. 115-119.

94. Larue C., Castillo-Michel H., Sobanska S., Cécillon L., Bureau S., Barthès V., Ouerdane L., Carrière M., Sarret G. (2014), Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation, Journal of Hazardous Materials, 264(1), pp. 98-106.

95. Li A.N., Li S., Li H.B., Xu D.P., Xu X.R., Chen F. (2014), Total phenolic contents and antioxidant capacities of 51 edible and wild flowers, Journal of Functional Foods, 6(1), pp. 319-330.

96. Libralato G., Devoti A.C., Zanella M., Sabbioni E., Mičetić I., Manodori L., Pigozzo A., Manenti S., Groppi F., Ghirardini A.V. (2016), Phytotoxicity of ionic, micro- and nano-sized iron in three plant species, Ecotoxicology and Environmental Safety, 123(1), pp. 81-88.

97. Luong Thien Nghia, Hoang Thanh Tung, Nguyen Phuc Huy, Vu Quoc Luan, Duong Tan Nhut (2017), The effects of silver nanoparticles on growth of Chrysanthemum morifolium Ramat. cv. "JIMBA" in different cultural system, Vietnam Journal of Science and Technology, 55(4), pp. 493-504.

98. Ma C., Chhikara S., Xing B., Musante C., White J.C., Dhankher O.P. (2013), Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure, ACS Sustainable Chemistry & Engineering, 1(7), pp. 768-778.

99. Ma X., Geiser-Lee J., Deng Y., Kolmakov A. (2010), Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation, Science of the Total Environment, 408(16), pp. 3053-3061.

Có thể bạn quan tâm!

Xem toàn bộ 195 trang tài liệu này.

100. Ma X., Gurung A., Deng Y. (2013), Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species, Science of the Total Environment, 443(1), pp. 844-849.

101. Mahmood S., Reza R., Hossain G., Hauser B. (2017), Response of cytokinins on in vitroshoot multiplication of rose cv. Frisco, Journal of Agricultural Sciences and Technology, 5(2), pp. 6-11.

Nghiên cứu tác động của nano bạc và nano sắt lên chất lượng cây giống in vitro ở một số cây trồng có giá trị kinh tế - 17

102. Mahna N., Vahed S.Z., Khani S. (2013), Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants, Journal of Nanomedicine and Nanotechnology, 4(161), pp. 1-4.

103. Mandeh M., Omidi M., Rahaie M. (2012), In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture, Biological Trace Element Research, 150(1), pp. 376-380.

104. Martínez-Fernández D., Barroso D., Komárek M. (2016), Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure, Environmental Science and Pollution Research, 23(2), pp. 1732-1741.

105. Mirzajani F., Askari H., Hamzelou S., Farzaneh M., Ghassempour A. (2013), Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria, Ecotoxicology and Environmental Safety, 88(1), pp. 48-54.

106. Miyazaki J.H., Yang S.F. (1987), The methionine salvage pathway in relation to ethylene and polyamine biosynthesis, Physiologia Plantarum, 69(2), pp. 366-370.

107. Mo V.T., Cuong L.K., Tung H.T., Tran V. H., Nghia L.T., Khanh C.M., Lam N.N., Nhut D.T. (2020), Somatic embryogenesis and plantlet regeneration from the seaweed Kappaphycus striatus, Acta Physiologiae Plantarum, 42(1), pp. 1-11.

108. Monica R.C., Cremonini R. (2009), Nanoparticles and higher plants, Caryologia, 62(2), pp. 161-165.

109. Morgan E.D, Funnell K. (2018), Limonium in Ornamental Crops, Springe, United Kingdom, pp. 513-527.

110. Morgan E.R., Burge G.K., Seelye J.K., Hopping M.E., Grant J.E. (1998), Production of inter-specific hybrids between Limonium perezii (Stapf) Hubb. and Limonium sinuatum (L.) Mill, Euphytica, 102(1), pp. 109- 115.

111. Munir M., Iqbal S., Baloch J.U.D., Khakwani A.A. (2015), In vitro explant sterilization and bud initiation studies of four strawberry cultivars, Journal of Applied Horticulture, 17(3), pp. 192-198.

112. Na H., Kim B.S., Kim J. (2019), Anther-derived callus induction based on culture medium, myo-inositol, AgNO3 and Fe-EDTA in Seolhyang strawberries, Journal of Plant Breeding and Crop Science, 11(1), pp. 26- 32.

113. Nair R., Varghese S.H., Nair B.G., Maekawa T., Yoshida Y., Kumar

D.S. (2010), Nanoparticulate material delivery to plants, Plant Science, 179(3), pp. 154-163.

114. Navarro E., Baun A., Behra R., Hartmann N.B., Filser J., Miao A., Quigg A., Santschi P.H., Sigg L. (2008), Environmental behavior and

ecotoxicity of engineered nanoparticles to algae, plants, and fungi, Ecotoxicology, 17(5), pp. 372-386.

115. Ngan H.T.M., Tung H.T., Bui V.L., Nhut D.T. (2020), Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus “Express golem”) plantlets cultured in two culture systems supplemented with iron nanoparticles, Scientia Horticulturae, 272(1), pp. 109612.

116. Nhut D.T., Huy N.P., Chien H.X., Luan T.C., Vinh B.T., Thao L.B. (2012), In vitro culture of petiole longitudinal thin cell layer explants of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.) and preliminary analysis of saponin content, International Journal of Applied Biology and Pharmaceutical Technology, 3(3), pp. 178-190.

117. Nhut D.T., Huy N.P., Luan V.Q., Binh N.V., Nam N.B., Thuy L.N.M., Ha D.T.N, Chien H.X., Huong T.T., Cuong H.V. (2011), Shoot regeneration and micropropagation of Panax vietnamensis Ha et Grushv. from ex vitro leaf-derived callus, African Journal of Biotechnology, 10(84), pp. 19499-19504.

118. Nhut D.T., Nga L.T.M., Chien H.X., Huy N.P. (2012), Morphogenesis of in vitro main root transverse thin cell layers of Vietnamese ginseng (Panax vietnamensis Ha et Grushv.), African Journal of Biotechnology, 11(23), pp. 6274-6289.

119. Nhut D.T., Vinh B.V.T., Hien T.T., Huy N.P., Nam N.B., Chien H.X. (2012), Effects of spermidine, proline and carbohydrate sources on somatic embryogenesis from main root transverse thin cell layers of Vietnamese ginseng (Panax vietnamensis Ha et. Grushv.), African Journal of Biotechnology, 11(5), pp. 1084-1091.

120. Nissen P. (1994), Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action, Physiologia Plantarum, 92(3), pp. 397-403.

121. O’Carroll D., Sleep B., Krol M., Boparai H., Kocur C. (2013), Nanoscale zero valent iron and bimetallic particles for contaminated site remediation, Advances in Water Resources, 51(1), pp. 104-122.

122. Oo K.T., Oo K.S., Mon Y.Y. (2018), Establishment of efficient surface sterilization protocol on different types of field grown strawberry explants (Fragaria × ananassa Duch.), Journal of Scientific and Innovative Research, 7(3), pp. 70-74.

123. Palei S., Rout G.R., Das A.K., Dash D.K. (2017), Callus induction and indirect regeneration of strawberry (Fragaria × ananassa) Duch. CV. Chandler, International Journal of Current Microbiology and Applied Sciences, 6(11), pp. 1311-1318.

124. Pistocchi R., Bagni N., Creus J.A. (1987), Polyamine uptake in carrot cell cultures, Plant Physiology, 84(2), pp. 374-380.

125. Pokhrel L.R., Dubey B. (2013), Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles, Science of the Total Environment, 452(1), pp. 321-332.

126. Racuciu M., Creanga D.E. (2007), TMA-OH coated magnetic nanoparticles internalized in vegetal tissue, Romanian Journal of Physics, 52(3), pp. 395-402.

127. Razzaq A., Ammara R., Jhanzab H.M., Mahmood T., Hafeez A., Hussain

S. (2016), A novel nanomaterial to enhance growth and yield of wheat, Journal of Nanoscience and Nanotechnology, 2(1), pp. 55-58.

128. Reddy B.O., Giridhar P., Ravishankar G.A. (2001), In vitro rooting of Decalepis hamiltonii Wight & Arn., an endangered shrub, by auxins and root-promoting agents, Current Science, 81(11), pp. 1479-1482.

129. Römheld V., Kramer D. (1983), Relationship between proton efflux and rhizodermal transfer cells induced by iron deficiency, Zeitschrift für Pflanzenphysiologie, 113(1), pp. 73-83.

130. Römheld V., Marschner H. (1986), Evidence for a specific uptake system for iron phytosiderophores in roots of grasses, Plant Physiology, 80(1), pp. 175-180.

131. Römheld V., Müller C., Marschner H. (1984), Localization and capacity of proton pumps in roots of intact sunflower plants, Plant Physiology, 76(3), pp. 603-606.

132. Rostami A.A., Shahsavar A. (2009), Nano-Silver particles eliminate the in vitro contamination of olive 'Mission' explants, Asian Journal of Plant Sciences, 8(7), pp. 505-509.

133. Sabo-Attwood T., Unrine J.M., Stone J.W., Murphy C.J., Ghoshroy S., Blom D., Bertsch P.M., Newman L.A. (2012), Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings, Nanotoxicology, 6(4), pp. 353-360.

134. Safavi K. (2014), Effect of titanium dioxide nanoparticles in plant tissue culture media for enhance resistance to bacterial activity, Bulletin of Environment, Pharmacology and Life Sciences, 3(5), pp. 163-166.

135. Salama H.M. (2012), Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.), International Research Journal of Biotechnology, 3(10), pp. 190-197.

136. Sarmast M.K., Niazi A., Salehi H., Abolimoghadam A. (2015), Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture, Plant Cell, Tissue and Organ Culture, 121(1), pp. 227-236.

137. Sarmast M.K., Salehi H. (2016), Silver nanoparticles: an influential element in plant nanobiotechnology, Molecular Biotechnology, 58(7), pp. 441-449.

138. Sarmast M.K., Salehi H., Khosh-Khui M. (2011), Nano silver treatment is effective in reducing bacterial contaminations of Araucaria excelsa R. Br. var. glauca explants, Acta Biologica Hungarica, 62(4), pp. 477-484.

139. Sato K. (1989), Statice In: Collected data of plant genetic resources, Kodansha, Tokyo, pp. 1040-1041.

140. Seif S.M., Sorooshzadeh A., Rezazadehs H., H.A.Naghdibadi (2011), Effect of nanosilver and silver nitrate on seed yield of borage, Journal of Medicinal Plants Research, 5(2), pp. 171-175.

141. Shah V., Belozerova I. (2009), Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds, Water, Air, and Soil Pollution, 197(1-4), pp. 143-148.

142. Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. (2012), Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea, Applied Biochemistry and Biotechnology, 167(8), pp. 2225-2233.

143. Shrivastava S., Bera T., Roy A., Singh G., Ramachandrarao P., Dash D. (2007), Characterization of enhanced antibacterial effects of novel silver nanoparticles, Nanotechnology, 18(22), pp. 103-225.

144. Shukla P.K., Misra P., Kole C. (2016), Uptake, translocation, accumulation, transformation, and generational transmission of nanoparticles in plants in Plant nanotechnology, Springer, London, pp. 183-218.

145. Simpson D. (2018), The economic importance of strawberry crops, Springer, United Kingdom, pp. 1-7.

146. Skoog F., Miller C.O. (1957), Chemical regulation of growth and organ formation in plant tissue cultured in vitro, Symposium Society of Experimental Biology, 54(11), pp. 118-231.

147. Smart D.R., Ferro A., Ritchie K., Bugbee B.G. (1995), On the use of antibiotics to reduce rhizoplane microbial populations in root physiology and ecology investigations, Physiologia Plantarum, 95(4), pp. 533-540.

148. Sondi I., Salopek-Sondi B. (2004), Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, Journal of Colloid and Interface Science, 275(1), pp. 177-182.

149. Spinoso-Castillo J.L., Chavez-Santoscoy R.A., Bogdanchikova N., Pérez-Sato J.A., Morales-Ramos V., Bello-Bello J.J. (2017), Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system, Plant Cell, Tissue and Organ Culture, 129(2), pp. 195-207.

150. Street H.E. (1974), Tissue culture and plant science, Academic Press, London, pp. 457.

151. Sutter E.G., Ahmadi H., Labavitch J.M. (1997), Direct regeneration of strawberry (Fragaria × ananassa duch.) from leaf disks, Acta Horticulturae, 447(1), pp. 243-246.

152. Syu Y.Y., Hung J.H., Chen J.C., Chuang H.W. (2014), Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression, Plant Physiology and Biochemistry, 83(1), pp. 57-64.

153. Takagi S., Nomoto K., Takemoto T. (1984), Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants, Journal of Plant Nutrition, 7(1-5), pp. 469-477.

154. Takeda F., Hokanson S.C., Enns J.M. (2004), Influence of daughter plant weight and position on strawberry transplant production and field performance in annual plasticulture, HortScience, 39(7), pp. 1592-1595.

155. Thao N.P., Khan M.I.R., Thu N.B.A., Hoang X.L.T., Asgher M., Khan N.A., Tran L.S.P. (2015), Role of ethylene and its cross talk with other

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 19/02/2023