Nghiên cứu tác động của nano bạc và nano sắt lên chất lượng cây giống in vitro ở một số cây trồng có giá trị kinh tế - 16

28. Azhar B.J., Zulfiqar A., Shakeel S.N., Schaller G.E. (2019), Amplification and adaptation in the ethylene signaling pathway, Small Methods, 1(1), pp. 1-21.

29. Bailey L.H. (1978), Hortus third: A concise dictionary of plants cultivated in the United States and Canada, Macmillan, New York, pp. 78-113.

30. Bais H.P., Ravishankar G.A. (2002), Role of polyamines in the ontogeny of plants and their biotechnological applications, Plant Cell, Tissue and Organ Culture, 69(1), pp. 1-34.

31. Bais H.P., Sudha G., Suresh B., Ravishankar G.A. (2000), Silver nitrate influences in vitroroot formation in Decalepis hamiltonii Wight & Arn, Current Science, 79(6), pp. 894-898.

32. Bakhtiari M., Moaveni P., Sani B. (2015), The effect of iron nanoparticles spraying time and concentration on wheat, Biological Forum - An International Journal, 7(1), pp. 679-683.

33. Ball P. (2002), Natural strategies for the molecular engineer, Nanotechnology, 13(5), pp. 15-28.

34. Barbosa L.M.P., Neto V.B.D. Paiva, Dias L.L.C., Festucci-Buselli R.A., Alexandre R.S., Larema L., Finger F.L., Otoni W.C. (2013), Biochemical and morpho-anatomical analyses of strawberry vitroplants hyperhydric tissues affected by BA and gelling agents, Revista Ceres, 60(2), pp. 152-160.

35. Barrett C., Cassells A.C. (1994), An evaluation of antibiotics for the elimination of Xanthomonas campestris pv. pelargonii (Brown) from Pelargonium x domesticum cv. ‘Grand Slam’ explants in vitro, Plant Cell Tissue and Organ Culture, 36(2), pp. 169-175.

36. Berlin J., Forche E. (1981), DL-a-difluoromethylornithine causes enlargement of cultured tobacco cells, Zeitschrift für Pflanzenphysiologie, 101(3), pp. 277-282.

37. Bernard F., Moghadam N.N., Mirzajani F. (2015), The effect of colloidal silver nanoparticles on the level of lignification and hyperhydricity syndrome in Thymus daenensis vitro shoots: a possible involvement of bonded polyamines, In Vitro Cellular & Developmental Biology-Plant, 51(5), pp. 546-553.

Có thể bạn quan tâm!

Xem toàn bộ 195 trang tài liệu này.

38. Bertalanffy L.V. (1963), Acridine orange fluorescence in cell physiology, cytochemistry and medicine, Protoplasma, 57(1), pp. 51-83.

39. Beyer E.M. (1976), A potent inhibitor of ethylene action in plants, Plant Physiology, 58(3), pp. 268-271.

Nghiên cứu tác động của nano bạc và nano sắt lên chất lượng cây giống in vitro ở một số cây trồng có giá trị kinh tế - 16

40. Bhojwani S.S., Dantu P.K. (2013), Plant tissue culture: an introductory text, Springer, India, pp. 260-263.

41. Boenigk J., Beisser D., Zimmermann S., Bock C., Jakobi J., Grabner D., Großmann L., Rahmann S., Barcikowski S., Sures B. (2014), Effects of silver nitrate and silver nanoparticles on a planktonic community: general trends after short-term exposure, Public Library of Science One, 9(4), pp. 225-340.

42. Campos E.V.R., De Oliveira J.L., Fraceto L.F. (2014), Applications of controlled release systems for fungicides, herbicides, acaricides, nutrients, and plant growth hormones: a review, Advanced Science, Engineering and Medicine, 6(4), pp. 373-387.

43. Carpita N.C., Gibeaut D.M. (1993), Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth, The Plant Journal, 3(1), pp. 1-30.

44. Chaloupka K., Malam Y., Seifalian A.M. (2010), Nanosilver as a new generation of nanoproduct in biomedical applications, Trends in Biotechnology, 28(11), pp. 580-588.

45. Chang C. (2016), Q&A: How do plants respond to ethylene and what is its importance?, BMC Biology, 14(1), pp. 1-7.

46. Chau N.H., Bang L.A., Buu N.Q., Dung T.T.N., Ha H.T., Quang D.V. (2008), Some results in manufacturing of nanosilver and investigation of its application for disinfection, Advances in Natural Sciences, 9(2), pp. 241-248.

47. Choi H.K., Yun J.H., Kim S.I., Son J.S., Kim H.R., Kim J.H., Choi H.J., Hong S.S. (2001), Enhanced production of paclitaxel by semi- continuous batch process (SCBP) in suspension culture of Taxus chinensis, Enzyme and Microbial Technology, 29(10), pp. 583-586.

48. Corredor E., Testillano P.S., Coronado M.J., González-Melendi P., Fernández-Pacheco R., Marquina C., Ibarra M.R., de-la-Fuente J.M., Rubiales D., Pérez-de-Luque A. (2009), Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification, BMC Plant Biology, 9(1), pp. 45-56.

49. Crane R.A., Scott T.B. (2012), Nanoscale zero-valent iron: future prospects for an emerging water treatment technology, Journal of Hazardous Materials, 211(1), pp. 112-125.

50. Cristescu S.M., Mandon J., Arslanov D., Pessemier J. De, Hermans C., Harren F.J. (2013), Current methods for detecting ethylene in plants, Annals of Botany, 111(3), pp. 347-360.

51. Dashek W.V. (2000), Methods in plant electron microscopy and cytochemistry in some fluorescence microscopical methods for use with algal, fungal, and plant cells, Springer Science & Business Media, New York, pp. 59-81.

52. Duncan D.B. (1955), Multiple ranges and multiple F test, Biometrics, 11(1), pp. 1-42.

53. Duong Tan Nhut, Vu Quoc Luan, Nguyen Van Binh, Pham Thanh Phong, Bui Ngoc Huy, Dang Thi Ngoc Ha, Phan Quoc Tam, Nguyen Ba Nam, Vu Thi Hien, Bui Van The Vinh, Lam Thi My Hang, Duong Thi Mong Ngoc, Lam Bich Thao, Tran Cong Luan ( 2009), The effects of some factors on in vitro biomass production of vietnamese ginseng (Panax vietnamensis Ha et Grushv.) and preliminary analysis of saponin content, Vietnam Journal of Biotechnology, 7(3), pp. 357-370.

54. El‐Temsah Y.S., Joner E.J. (2012), Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil, Environmental Toxicology, 27(1), pp. 42-49.

55. Eskandari H. (2011), The importance of iron (Fe) in plant products and mechanism of its uptake by plants, Journal of Applied Environmental and Biological Sciences, 1(10), pp. 448-452.

56. Evans P.T., Malmberg R.L. (1989), Do polyamines have roles in plant development, Annual Review of Plant Biology, 40(1), pp. 235-269.

57. Ewais E.A., Desouky S.A., Elshazly E.H. (2015), Evaluation of callus responses of Solanum nigrum L. exposed to biologically synthesized silver nanoparticles, Nanoscience and Nanotechnology, 5(3), pp. 45-56.

58. Fakhrfeshani M., Bagheri A., Sharifi A. (2012), Disinfecting effects of nano silver fluids in gerbera (Gerbera jamesonii) capitulum tissue culture, Journal of Biodiversity and Environmental Sciences, 6(17), pp. 121-127.

59. Feng X. (2002), Rapid propagation of Limonium sinuatum by tissue culture, Guizhou Agricultural Sciences, 30(1), pp. 9-13.

60. Feynman R.P. (1959), Plenty of Room at the Bottom, APS annual meeting, United States, pp. 1-7.

61. Fuentes S.R.L., Calheiros M.B.P., Manetti-Filho J., Vieira L.G.E. (2000), The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora, Plant Cell, Tissue and Organ Culture, 60(1), pp. 5-13.

62. Ganhão R., Pinheiro J., Tino C., Faria H. (2019), Characterization of nutritional, physicochemical, and phytochemical composition andantioxidant capacity of three Strawberry “Fragaria × ananassa Duch.” cultivars 62 (“Primoris”, “Endurance” and “Portola”) from Western region of Portugal, Foods, 8(12), pp. 1-13.

63. Genady E.A., Qaid E.A., Fahmy A.H. (2016), Copper sulfate nanoparticales in vitro applications on Verbena bipinnatifida Nutt. stimulating growth and total phenolic content increasments, International Journal of Pharmaceutical Research and Allied Sciences, 5(1), pp. 196-202.

64. Ghorbanpour M., Hadian J. (2015), Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro, Carbon, 94(1), pp. 749-759.

65. Giordani T., Fabrizi A., Guidi L., Natali L., Giunti G., Ravasi F., Cavallini A., Pardossi A. (2012), Response of tomato plants exposed to treatment with nanoparticles, EQA-International Journal of Environmental Quality, 8(8), pp. 27-38.

66. Giraldo J.P., Landry M.P., Faltermeier S.M., T.P. McNicholas, Iverson N.M., Boghossian A.A., Reuel N.F., Hilmer A.J., Sen F., Brew J.A. (2014), Plant nanobionics approach to augment photosynthesis and biochemical sensing, Nature materials, 13(4), pp. 400-408.

67. González-Melendi P., Fernández-Pacheco R., Coronado M.J., Corredor E., Testillano P.S., Risueđo M.C., Marquina C., Ibarra M.R., Rubiales D., Pérez-de-Luque A. (2007), Nanoparticles as smart treatment- delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues, Annals of Botany, 101(1), pp. 187-195.

68. Ha N.T.M., Do C.M., Hoang T.T., Nghiep D.N., Nhut D.T. (2020), The effect of cobalt and silver nanoparticles on overcoming leaf abscission and enhanced growth of rose (Rosa hybrida L.‘Baby Love’) plantlets cultured in vitro, Plant Cell, Tissue and Organ Culture, pp. 1-13.

69. Haddadi F., Aziz M.A., Saleh G., Rashid A.A., Kamaladini H. (2010), Micropropagation of Strawberry cv. Camarosa: Prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6- benzylamino-purine, Horticultural Science, 45(3), pp. 453-456.

70. Halperin W. (1969), Morphogenesis in cell cultures, Annual Review of Plant Physiology, 20(1), pp. 395-418.

71. Handy R.D., Kammer F. Von Der., Lead J.R., Hassellöv M., Owen R., Crane M. (2008), The ecotoxicology and chemistry of manufactured nanoparticles, Ecotoxicology, 17(4), pp. 287-314.

72. Hanks G. (2015), A review of production statistics for the cut flower and foliage sector 2015 (part of AHDB Horticulture funded project PO BOF 002a), The National Cut Flower Centre, Agriculture and Horticulture Development Board, pp. 102.

73. Heimer Y.M., Mizrahi Y., Bachrach U. (1979), Ornithine decarboxylase activity in rapidly proliferating plant cells, Febs Letters, 104(1), pp. 146- 148.

74. Helaly M.N., El-Metwally M.A., El-Hoseiny H., Omar S.A., El-Sheery

N.I. (2014), Effect of nanoparticles on biological contamination of in

vitro cultures and organogenic regeneration of banana, Australian Journal of Crop Science, 8(4), pp. 612-624.

75. Hether N.H., Olsen R.A., Jackson L.L. (1984), Chemical identification of iron reductants exuded by plant roots, Journal of Plant Nutrition, 7(1- 5), pp. 667-676.

76. Houben M., Poel B. Van de (2019), 1-Aminocyclopropane-1-carboxylic acid oxidase (ACO): the enzyme that makes the plant hormone ethylene, Frontiers in Plant Science, 10(1), pp. 695-709.

77. Hussain S., Lane S.D., Price D.N. (1994), A preliminary evaluation of the use of microbial culture filtrates for the control of contaminants in plant tissue culture systems, Plant Cell, Tissue and Organ Culture, 36(1), pp. 45-51.

78. Igawa T., Hoshino Y., Mii M. (2002), Efficient plant regeneration from cell cultures of ornamental statice, Limonium sinuatum Mill., In Vitro Cellular & Developmental Biology - Plant, 38(2), pp. 157-162.

79. Jan A., Bhat K.M., Bhat S.J.A., Mir M.A., Bhat M.A., Imtiyaz A., Rather

J.A. (2013), Surface sterilization method for reducing microbial contamination of field grown strawberry explants intended for in vitro culture, African Journal of Biotechnology, 12(39), pp. 5749-5753.

80. Jurkevitch E., Hadar Y., Chen Y. (1986), The remedy of lime‐induced chlorosis in peanuts by Pseudomonas sp. siderophores, Journal of Plant Nutrition, 9(3-7), pp. 535-545.

81. Kargov S.I., Korolev N.I., Stanislavskiĭ O.B., Kuznetsov I.A. (1986), Interaction of immobilized DNA with silver ions, Molekuliarnaia Biologiia, 20(6), pp. 1499-1505.

82. Kaushal K., Nath A.K., Sharma D.R. (2006), Establishment of callus cultures and plant regeneration in strawberry (Fragaria × ananassa

Duch.) cv. Chandler, Indian Journal of Plant Physiology, 11(2), pp. 136- 144.

83. Khadka S., Rana N., Rajbahak S. (2019), In-vitro mass propagation of Limonium sinuatum L. Mill. (Statice), Journal of Plant Resources, 17(1), pp. 147-154.

84. Kharrazi M., Nemati H., Tehranifar A., Bagheri A., Sharifi A. (2011), In vitro culture of carnation (Dianthus caryophyllus L.) focusing on the problem of vitrification, Journal of Biological and Environmental Science, 5(13), pp. 1-6.

85. Kim D.H., Gopal J., Sivanesan I. (2017), Nanomaterials in plant tissue culture: the disclosed and undisclosed, Royal Society of Chemistry Advances, 7(58), pp. 36492-36505.

86. Kim J.H., Lee Y., Kim E.J., Gu S., Sohn E.J., Seo Y.S., Chang Y.S. (2014), Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening, Environmental Science & Technology, 48(6), pp. 3477-3485.

87. Kim J.H., Yi Y.S., Kim M.Y., Cho J.Y. (2017), Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases, Journal of Ginseng Research, 41(4), pp. 435-443.

88. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H., Park Y.K., Park Y.H., C.Y.Hwang (2007), Antimicrobial effects of silver nanoparticles, Nanomedicine: Nanotechnology, Biology and Medicine, 3(1), pp. 95-101.

89. Kong L., Yeung E.C. (1994), Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation, Plant Science, 104(1), pp. 71-80.

90. Krishnaraj C., Jagan E.G., Ramachandran R., Abirami S.M., Mohan N., Kalaichelvan P.T. (2012), Effect of biologically synthesized silver

Xem tất cả 195 trang.

Ngày đăng: 19/02/2023
Trang chủ Tài liệu miễn phí