Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe - 18


10) Phan Dinh Gio, Le Dai Vuong and Nguyen Phan Nhu Y (2012), Effect of PZT content on the structure and electrical properties of PZT-PZN-PMnN ceramics. The 6th International Workshop on Advanced Materials Science and Nanotechnology (IWAMSN2012) - October 30-November 02, 2012 - Ha Long City, Vietnam.

11) Le Dai Vuong, Phan Dinh Gio, Truong Van Chuong, Dung Thi Hoai Trang, Duong Viet Hung, Nguyen Trung Duong (2013), Effect of Zr/Ti ratio content on some physical properties of the low temperature sintering PZT-PZN-PMnN ceramics. International Journal of Materials and Chemistry, Vol. 3(2), pp: 39- 43.

12) Le Dai Vuong, Phan Dinh Gio, Nguyen Thi Kieu Lien (2013), Physical properties of PZT-PZN-PMnN ceramics were fabricated by B-site oxide mixing technique, Journal of science, Hue University, Vol. 84, No.6, pp: 93-99.

13) Le Dai Vuong, Phan Dinh Gio, Nguyen Truong Tho, and Truong Van Chuong (2013), Relaxor Ferroelectric Properties of PZT-PZN-PMnN Ceramics. Indian Journal of Engineering & Materials Sciences, Vol. 20, pp: 555-560.

14) Le Dai Vuong, Phan Dinh Gio (2013). Effect of Li2CO3 addition on the sintering behavior and physical properties of PZT-PZN-PMnN ceramics, International Journal of Materials Science and Applications, Vol. 2(3), pp: 89- 93.

15) Le Dai Vuong, Phan Dinh Gio (2014), Structure and electrical properties of Fe2O3-Doped PZT–PZN–PMnN ceramics, Journal of Modern Physics,Vol 5, pp: 1258-1263.

16) Le Dai Vuong, Phan Dinh Gio, Vo Thi Thanh Kieu (2014), Raman scattering spectra and dielectric relaxation behavior of PZT-PZN-PMnN ceramics, International Journal of Chemistry and Materials Research, Vol. 2(6), pp: 48-55.

17) Phan Dinh Gio, Le Dai Vuong, Ho Thi Thanh Hoa (2014), Electrical Properties of CuO-Doped PZT-PZN-PMnN Piezoelectric Ceramics Sintered at Low Temperature, Journal of Materials Science and Chemical Engineering, Vol. 2, pp: 20-27.


Có thể bạn quan tâm!

Xem toàn bộ 161 trang tài liệu này.

TÀI LIỆU THAM KHẢO


Nghiên cứu chế tạo và các tính chất vật lý của hệ gốm đa thành phần trên cơ sở PZT và các vật liệu sắt điện chuyển pha nhòe - 18

Tiếng Việt

[1]. Trương Văn Chương (2002), Chế tạo và nghiên cứu các tính chất vật lý của gốm áp điện hệ PbTiO3 pha tạp La, Mn, Luận án Tiến sỹ khoa học vật liệu, Hà Nội.

[2]. Lê Quang Tiến Dũng (2014), Nghiên cứu chế tạo thiết bị siêu âm công suất để tổng hợp vật liệu TiO2 cấu trúc nanô, Luận án Tiến sỹ Vật lý, ĐHKH Huế.

[3]. Phan Đình Giớ (2007), Nghiên cứu các tính chất vật lý của gốm sắt điện hai, ba thành phần trên cơ sở PZT pha tạp La, Mn, Fe, Luận án Tiến sỹ Vật lý, ĐHKH Huế.

[4]. Thân Trọng Huy (2014), Chế tạo và nghiên cứu các tính chất vật lý của gốm áp điện nhiều thành phần [(1-x)Pb(Zr,Ti)O3 – xPb(Mn1/3Nb2/3)O3] (PZT- PMnN) pha tạp đất hiếm, Luận án Tiến sỹ khoa học vật liệu, Hà Nội.

[5]. Nguyễn Đình Tùng Luận (2011), Chế tạo và nghiên cứu các tính chất vật lý của gốm áp điện nhiều thành phần (1-x)Pb(ZrzTi1-z)O3 - xPb[(Sb1/2Nb1/2)y(Mn1/3Nb2/3)1-y]O3, Luận án Tiến sỹ Vật lý, ĐHKH Huế.

[6]. Nguyễn Đình Tùng Luận, Trương Văn Chương, Đặng Anh Tuấn, Phan Thanh Hà, Đoàn Nam Hữu, Vi cấu trúc và các tính chất điện môi của gốm sắt điện relaxo PZT-PMnN-PSbN, Tạp chí Khoa học Công nghệ, Viện Khoa học Vật liệu, Hà Nội, 2012.

[7]. Nguyễn Đình Tùng Luận, Thân Trọng Huy, Trương Văn Chương, Lê Văn Hồng, Nghiên cứu về biên pha hình thái của hệ gốm áp điện PZT– PbMnSbN, Tạp chí Khoa học Công nghệ, Viện Khoa học Vật liệu, Hà Nội, 2012.


Tiếng Anh


[8]. Bau ¨erle D. and Pinczuk A. (1976), “Low Frequency Vibrational Modes and the Phase Transitions of Rhombohedral PbTi1-xZrxO3”, Solid State Comm., 19,1169–71.

[9]. Beere W (1975), “A unifying theory of the stability of penetrating liquid phases and sintering pores”, Acta Metall 23, pp:131-138.

[10]. Bokov. A.A, Ye Z. G. (2006), “Recent progress in relaxor ferroelectrics with perovskite structure”, Journal of materials science, pp. 41 31–52.

[11]. Burns G. and Scott B. A. (1973), “Lattice Modes in Ferroelectric Perovskites: PbTiO3”, Phys. Rev. B, 7, 3088.

[12]. Burns G., Sanjurjo J. A., and Lopez-Cruz E. (1984), “High-Pressure Raman Study of Two Ferroelectric Crystals Closely Related to PbTiO3, Phys. Rev. B, 30,7170.

[13]. Chao X., Ma D., Gu R., Yang Z. (2010), “Effects of CuO addition on the electrical responses of the low-temperature sintered Pb(Zr0.52Ti0.48)O3 – Pb(Mg1/3Nb2/3)O3 – Pb(Zn1/3Nb2/3)O3 ceramics”, Journal of Alloys and Compounds 491, pp: 698–702.

[14]. Chao X., Yang L., Pan H., Yang Z. (2012), “Fabrication, temperature stability and characteristics of Pb(ZrxTiy)O3 – Pb(Zn1/3Nb2/3)O3 – Pb(Ni1/3Nb2/3)O3 piezoelectric ceramics bimorph”, Ceramics International 38, pp: 3377–3382.

[15]. Chen C. Y., Lin H. L. (2004), “Piezoelectric properties of Pb(Mn1/3Nb2/3)O3

– PbZrO3 – PbTiO3 ceramics with sintering aid of 2CaO–Fe2O3 compound”,

Ceramics International 30, pp: 2075–2079.

[16]. Chung K., Lee D., Yoo J., Jeong Y., Lee H., Kang H. (2005), “Piezoelectric properties of low-temperature sintering Pb(Co1/2W1/2)O3 – Pb(Mn1/3Nb2/3)O3

– Pb(Zr0.48Ti0.52 )O3 ceramics with the sintering temperature and the amount of CuO addition”, Sensors and Actuators A 121, pp: 142–147.


[17]. T.V. Chuong, L.Q.T. Dung, N.D.T. Luan and T.T. Huy (2011), “Application of ultrasound for nanomaterials synthesis”, Int. J. Nanotechnol., Vol. 8, Nos. 3, pp:291-299.

[18]. Damjanovic D. (1998), Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys. 61, Printed in the UK, pp. 1267-1324

[19]. Dilsom A. Sanchez, Nora Ortega, Ashok Kumar, G. Sreenivasulu, Ram S. Katiyar, J. F. Scott, Donald M. Evans, Miryam A. A., Schilling A, and J. M. Gregg (2013), “Room-temperature single phase multiferroic magnetoelectrics: Pb(Fe, M)x(Zr,Ti)1-xO3 [M =Ta, Nb]”, Journal of applied physics 113, 074105.

[20]. Du J., Qiu J, Zhu K., Ji H. (2013), “Microstructure, temperature stability and electrical properties of ZnO-modi fied Pb(Ni1/3Nb2/3)O3 – Pb(Fe1/2Nb1/2 )O3 – Pb(Zr0.3Ti 0.7)O3 piezoelectric ceramics”, Ceramics International 39, pp: 9385 – 9390.

[21]. Du J.Z., Qiu J.H., Zhu K.J., Ji H.L., Pang X.M., Luo J. (2012), “Effects of

Fe2O3 Addition on Microstructure and Piezoelectric Properties of 0.55Pb(Ni1/3Nb2/3) – 0.45Pb(Zr0.3Ti0.7)O3 Ceramics”, J. Materials Letters, 66 (1): 153 – 155.

[22]. Le Quang Tien Dung, Truong Van Chuong and Do Phuong Anh (2011), “The effect of TiO2 nanotubes on the sintering behavior and properties of PZT ceramics”, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 025013-5.

[23]. Fan G.F., Shi M.B., Lu W.Z., Wang Y.Q., Liang F. (2014), “Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics”, Journal of the European Ceramic Society 34, pp: 23–28.


[24]. Fan H. and Kim H-E. (2001), “Effect of Lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Nb0.53)0.5)O3 ceramics” Journal.J. Am. Ceram. Soc. 84 (3), pp. 636-638.

[25]. Fan H. and Kim H-E. (2002), “Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate”, Journal of applied physics, Vol. 91(1), pp: 317-322.

[26]. Fang B., Sun R., Shan Y., Tezuka K., Imoto H. (2007), “On the feasibility of synthesizing complex perovskite ferroelectric ceramics via a B-site oxide mixing route”, J Mater Sci 42, pp: 9227–9233.

[27]. Frantti J., Fujioka Y., Puretzky A., Xie Y., Ye Z. G. (2013), J. Appl. Phys.

113, 174104.

[28]. Fu J., Zuo R. (2013), “Giant electrostrains accompanying the evolution of a relaxor behavior in Bi(Mg,Ti)O3–PbZrO3–PbTiO3 ferroelectric ceramics” Acta Materialia 61, pp: 3687–3694.

[29]. Gao F., Cheng L., Hong R., Liu J., Wang C. and Tian C. (2009), “Crystal structure and piezoelectric properties of xPb(Mn1/3Nb2/3)O3– (0.2 − x)Pb(Zn1/3Nb2/3)O3 – 0.8Pb(Zr0.52Ti0.48)O3 ceramic”, Ceramics International 35, pp. 1719–1723.

[30]. Phan Dinh Gio, Vo Duy Dan, (2008), “Some dielectric, ferroelectric, piezoelectric properties of 0.35Pb(Zn1/3Nb2/3)O3-0.65Pb(ZrxTi1- x)]O3 ceramics”, Journal of Alloys and Compounds, vol. 449, 1-2, 24-27.

[31]. Phan Dinh Gio, Le Dai Vuong, Nguyen Van Hung, Duong Viet Hung (2012), “Effect of MnO2 addition on dielectric, ferroelectric and piezoelectric properties of PLZT- PZN ceramics”, Journal of science, Hue University, Vol. 77, No. 8, pp. 25-31.


[32]. Haertling G.H.& C.E. Land (1971), Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications”, J. of the American ceramic society, Vol. 54, No. 1, pp. 1-9.

[33]. Han H-S, Park E-C, and Lee J-S. (2011), “Low-Firing Pb(Zr,Ti)O3 -Based Multilayer Ceramic Actuators Using Ag Inner Electrode”, Transactions On Electrical And Electronic Materials, Vol. 12, No. 6, pp. 249-252.

[34]. Hou Y. D., Zhua M. K., Tian C. S., Yan H. (2004), “Structure and electrical properties of PMZN–PZT quaternary ceramics for piezoelectric transformers”, Sensors and Actuators A 116, pp: 455–460

[35]. Hou Y-D., Chang L-M., Zhu M-K, Song X-M., and Yan H. (2007), “Effect of Li2CO3 addition on the dielectric and piezoelectric responses in the low- temperature sintered 0.5PZN–0.5PZT systems”, Journal of applied physic 102, 084507.

[36]. Hu Z., Ma B., Liu S., Narayanan M., Blachandran U. (2014) “Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios”, Ceramics International 40, pp: 557–562.

[37]. Huang L., Bulou A., Kassiba A., Zeng J., Fu D., Errien N., Zheng L.,and Li

G. (2013), “Origin of temperature independent piezoelectric coefficient in Pb(Mg1/3Nb2/3)O3 - BaTiO3 - PbTiO3 ceramics”, Journal Of Applied Physics 114, 074105.

[38]. IEEE Standard on Piezoelectricity, ANSI/IEE Standard 176, 1987.

[39]. Jaffe H. (1961), IRE Stanđards on Piezoelectric Crystal, Proc. IRE 49, p.p.

1161-1169.

[40]. Jaffe B., W. R. Cook and H. Jaffe (1971), Piezoelectric ceramics, Academic Press, Newyork.

[41]. Jeong Y., Yoo J., Lee S., Hong J. (2007), “Piezoelectric characteristics of low temperature sintering Pb(Mn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3


Pb(Zr0.50Ti0.50)O3 according to the addition of CuO and Fe2O3”, Sensors and Actuators A: Physical, Vol. 135, pp: 215–219.

[42]. Jiang X.P., Fang J.W., Zeng H.R., Chu B.J., Li G.R., Chen D.R., Yin Q.R.

(2000), “The influence of PbZrO3/PbTiO3 ratio on diffuse phase transition of Pb(Zn1/3Nb2/3)O3 – PbZrO3 – PbTiO3 system near the morphotropic phase boundary” , Materials Letters 44, pp: 219–222.

[43]. John R. Ferraro, Kazuo Nakamoto and Chris W. Brown (2003), Introductory Raman Spectroscopy, Elsevier.

[44]. Kang S. H., Ahn C. W., Lee H. J. & Kim I. W., Park E. C. & Lee J. S.

(2008), “Dielectric and pyroelectric properties of Li2CO3 doped 0.2Pb(Mg1/3Nb2/3)O3 – 0.5Pb(Zr0.48Ti0.52)O3 – 0.3Pb(Fe1/3Nb2/3)O3 ceramics”,

J Electroceram 21, pp: 855–858.

[45]. Kim M. S., Jeon S., Jeong S. J., Kim I. S., and Song J. S. (2008), “Effect of CuO Additions on Microstructures and Electromechanical Properties of 0.4Pb(Mg1/3Nb2/3)O3 - 0.25PbZrO3 - 0.35PbTiO3 Ceramics”, Electronic Materials Letters, Vol. 4, No. 4 pp. 189-192.

[46]. Kim Y. H., Ryu H., Cho Y. K., Lee H. J, and Nahm S., (2013), “TEM

Observations on 0.65Pb(Zr0.42Ti0.58)O3-0.35Pb(Ni0.33Nb0.67)O3 Ceramics with CuO Additive”, J. Am. Ceram. Soc., Vol. 96 (1), pp: 312–317.

[47]. Kingon A. and j. Brian Clark (1983), “Sintering of PZT Ceramics: I, Atmosphere Control”, Journal of the American Ceramic Society, Vol. 66, No. 4, pp: 253-256.

[48]. Kitaguchi H., Takada J., Oda K., and Miura Y. (1990), Equilibrium phase diagram for the system PbO-CaO-CuO”, J. Mater. Res., Vol. 5, No. 5, pp: 929-231.

[49]. Kumar A. and Mishra S.K. (2014), “Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics”,


International Journal of Minerals, Metallurgy and Materials, Vol. 21 (2), pp: 175.

[50]. Lee J. Y., Choi J. W., Kang M. G., Kim S. J., Ko T. K. Yoon S. J. (2009),

“Effect of CuO addition on sintering temperature and piezoelectric properties of 0.05Pb(Al0.5Nb0.5)O3 − 0.95Pb(Zr0.52Ti0.48)O3 + 0.7 wt.% Nb2 O5 + 0.5

wt.% MnO2 ceramics”, J Electroceram, Vol. 23, pp:572 – 575.

[51]. Lee J. S., Choia M. S., Hung N. V., Kima Y. S, Kim I. W., Park E. C., Jeong

S. J., Song J. S. (2007), “Effects of high energy ball-milling on the sintering behavior and piezoelectric properties of PZT-based ceramics”, Ceramics International 33, pp: 1283–1286.

[52]. Li B., Li G., Zhang W. Z., Ding A. (2005), “Influence of particle size on the sintering behavior and high-power piezoelectric properties of PMnN–PZT ceramics”, Materials Science and Engineering B 121, pp: 92–97.

[53]. Li J. (2013), “Effect of CuO addition on structure and electrical properties of low temperature sintered quaternary piezoelectric ceramics”, Bull. Mater. Sci., Vol. 36, No. 5, pp. 877–881.

[54]. Li Jin, Zhanbing He, and Dragan D. (2009), “Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties”, Applied Physics Letters 95, 012905.

[55]. Liao Q, Chen X., Chu X., Fei Zeng, Guo D. (2013), “Effect of Fe doping on the structure and electric properties of relaxor type BSPT-PZN piezoelectric ceramics near the morphotropic phase boundary”, Sensors and Actuators A 201, pp: 222–229.

[56]. Luo N., Li Q., Xia Z. (2011), “Effect of Pb(Fe1/2Nb1/2)O3 modification on dielectric and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–Pb(Zr0.52Ti0.48)O3 ceramics”, Materials Research Bulletin 46, pp: 1333–1339.

[57]. Nguyen Dinh Tung Luan, Le Dai Vuong, Bui Cong Chanh (2013), “Microstructure, Ferroelectric and Piezoelectric Properties of PZT-PMnSbN

Xem tất cả 161 trang.

Ngày đăng: 08/01/2023
Trang chủ Tài liệu miễn phí