Bộ Điều Khiển Truy Nhập Vô Tuyến Rac (Radio Access Controller)

khả năng hỗ trợ cho các dịch vụ dữ liệu chuyển mạch gói, đặc biệt là nâng cao tốc độ truyền dữ liệu, mà trước hết là tốc độ đường xuống, 3GPP đã phát triển và chuẩn hóa trong phiên bản Release 5 một công nghệ mới, đó là công nghệ truy nhập gói đường xuống tốc độ cao (HSDPA) với những tính năng mới được đề cập trong các phiên bản R5 của 3GPP cho hệ thống truy nhập vô tuyến WCDMA/UTRA –FDD và được xem như là một trong những công nghệ tiên tiến cho hệ thống thông tin di động 3,5G. HSDPA bao gồm một tập các tính năng mới kết hợp chặt chẽ với nhau để cải thiện dung lượng mạng, và tăng tốc độ dữ liệu đỉnh trên 10 Mbps đối với lưu lượng gói đường xuống. Những cải tiến về mặt kỹ thuật cho phép các nhà khai thác có thể đưa ra nhiều dịch vụ tốc độ bit cao, cải thiện chất lượng dịch vụ (QoS) của các dịch vụ hiện có, và đạt chi phí thấp nhất. Khả năng hỗ trợ tốc độ dữ liệu và tính di động của HSDPA là chưa từng có trong các phiên bản trước đây của 3GPP.

Các khía cạnh kỹ thuật trong nội dung HSDPA bao gồm:

Phát kênh chia sẻ.

Điều chế và mã hóa thích ứng.

Kỹ thuật phát đa mã.

Yêu cầu lặp lại tự động nhanh HARQ.

Mục đích của HSDPA là hỗ trợ truy nhập gói đường xuống tốc độ cao bằng cách sử dụng một kênh chia sẻ đường xuống tốc độ cao (HS-DSCH) và hỗ trợ thoại được tích hợp trên kênh DCH và dữ liệu tốc độ cao trên kênh HS-DSCH trên cùng một sóng mang tương tự như DSCH trong Release 99).

Lợi ích của HSDPA như đã trình bày trong các phần trước cho đường xuống khi hầu hết lưu thông dữ liệu 3G được trông đợi đầu tiên là đường xuống. Release 6 sẽ nói về cải tiến, nâng cấp đường lên, được gọi là nâng cấp đường lên HSUPA (HSUPA: High Speed Uplink Packet Access). HSUPA sử dụng tương tự các đặc điểm chính như HSDPA, nhưng thay vì áp dụng cho đường xuống thì nó lại áp dụng cho đường lên. Điều này sẽ làm tăng tốc độ truyền đường xuống.

2.2.1.3 Nhận xét

Các mạng thông tin di động thế hệ 3 WCDMA và thế hệ 3,5G HSDPA và HSUPA ra đời đã phần nào đáp ứng được nhu cầu của người tiên dùng như: tốc độ truyền dữ liệu lên tới 2Mbps đối với mạng WCDMA, 10Mbps đường xuống đối với

Có thể bạn quan tâm!

Xem toàn bộ 103 trang tài liệu này.

công nghệ 3,5G), có thể truy nhập được nhiều dịch vụ như: truyền hình hội nghị, truy nhập Internet tốc độ cao,…

Tuy nhiên, các mạng di động này còn nhiều nhược điểm như: tốc độ truyền dữ liệu chưa cao, do đó chất lượng của các dịch vụ thời gian thực chưa cao, tốc độ truyền dữ liệu vẫn còn thấp, đặc biệt là tính di động kém. Khi người dùng đi vào vùng phủ của loại mạng khác ví dụ như mạng WLAN, WiMAX,… mà không nằm trong vùng phủ sóng của mình thì mạng không thể phục vụ người dùng được. Ngoài ra, việc sử dụng IPv4 cũng gây ra các hạn chế như không đủ địa chỉ để triển khai theo yêu cầu của mạng,… Khả năng triển khai các dịch vụ mới trên các mạng này rất khó do các hạn chế về tốc độ truyền thông và băng tần,…

Trong tương lai, người sử dụng mong muốn được sử dụng nhiều loại hình dịch vụ khác nhau với tốc độ truyền cao lên tới hàng trăm Mbps, có chất lượng tốt, có thể thâm nhập vào mạng từ mọi nơi, có khả năng sử dụng các dịch vụ mới một cách dễ dàng,…

2.2.2 Mô hình mạng thông tin di động 4G

Phạm vi của mạng 4G sẽ bao phủ toàn bộ từ các phần truyền dẫn vô tuyến, truyền dẫn trong mạng lõi đến tận các ứng dụng trên thiết bị đầu cuối. Với yêu cầu một kiến trúc phân lớp cho hệ thống, nhằm đảm bảo tính mở và tính thích ứng cho hệ thống, các thành phần chức năng trong mạng sẽ được chuẩn hoá theo các chức năng chung và mỗi chức năng chung này sẽ đại diện cho chức năng trong 1 lớp. Với yêu cầu này, chúng tôi phân chia cấu trúc mạng trên cơ sở của 4 lớp chức năng, tương ứng với 4 phạm vi chức năng của các thành phần trong hệ thống mạng.


Hình 2 5 Mô hình cấu trúc mạng 4G Với mô hình trên tính tích hợp hệ thống 1

Hình 2.5 Mô hình cấu trúc mạng 4G

Với mô hình trên, tính tích hợp hệ thống đã được giải quyết trên lớp truyền dẫn. Các hệ thống sử dụng môi trường truyền vô tuyến được tích hợp chung vào mạng RAN. Với mô hình này, các mạng truy nhập vô tuyến được tích hợp vào một môi trường chung, có nghĩa thuê bao di động đầu cuối khi ở bất cứ môi trường truyền vô tuyến nào cũng đảm bảo hoạt động trong mạng.

Tính tương tác giữa các lớp giúp cho mô hình có tính mở trong việc phát triển công nghệ cũng như dịch vụ trong tương lai. Việc xử lý các công nghệ điều chế, mã hoá và truy nhập trên các lớp tương tác cũng tạo ra tính thích nghi với các yêu cầu về dịch vụ, đảm bảo đầy đủ các yêu cầu về tốc độ dịch vụ trong tương lai.

Chức năng mạng truy nhập vô tuyến:

Có khả năng tích hợp giữa các thiết bị đầu cuối

Đảm bảo tốc độ dịch vụ

Chức năng của mạng lõi:

Kết nối các mạng khác nhau: mạng không dây và mạng có dây.

Truyền tải traffic trên các tuyến từ nơi gửi đến đích an toàn.

Định tuyến lưu lượng

Chuyển đổi dạng dữ liệu all IP Chức năng điều khiển:

Cung cấp nền tảng hạ tầng kết nối mạng dịch vụ

Điều khiển hệ thống:

Báo hiệu

Lưu lượng

Bảo mật (Security)

Billing

Mobity và Roaming Dịch vụ:

Cung cấp dịch vụ sử dụng cho người dùng

2.3. Chức năng các phần tử trong mô hình

2.3.1 Các phần tử lớp truy nhập vô tuyến

Nhiệm vụ chính của mạng truy nhập vô tuyến (Radio Access Network) là tạo và duy trì các kênh mang truy nhập vô tuyến (RAB) để thực hiện thông tin giữa thiết bị di động (UE) với mạng lõi (CN). Thiết bị người dùng ở đây có thể là các MS, các thiết bị xách tay,… Do đó, mạng truy nhập vô tuyến phải có khả năng giao tiếp với các thiết bị đầu cuối, kể cả khi thiết bị đầu cuối là thiết bị di động không dây thuộc mạng khác.

2.3.1.1 Thiết bị đầu cuối

Thiết bị đầu cuối di động trong mạng 4G phải có sự phát triển trong việc chạy nhiều dạng ứng dụng khác nhau. Điều này cũng đảm bảo cơ hội tăng lợi nhuận cho các nhà cung cấp dịch vụ bằng việc cung cấp thêm các dịch vụ giá trị gia tăng. Do vậy, các thiết bị này phải hoạt động có tính thích nghi và linh động cao. Hiện nay, các thiết bị đầu cuối di động đang trong quá trình chuyển dịch sang dạng tích hợp hội tụ. Các nhà sản xuất cũng cung cấp các hệ điều hành (OS) và phần mềm dịch vụ có tính mở, có kiến trúc dạng lớp và có khả năng chạy trên những phần mềm của các nhà cung cấp thứ 3. Tính phức tạp của thế hệ thiết bị đầu cuối di động này sẽ phải chưa đựng đầy đủ các điều kiện về phần cứng và phần mềm như sau: Các dạng ứng dụng khác nhau về

di động (như email, MMS …) -Thực hiện được nhiều phần mềm ghép ứng dụng (như dự đoán kiểu gõ, soạn thảo văn bản, kiểm tra phát âm) -Thực hiện trên nhiều dạng hệ điều hành (như Symbian, SmartPhone, Linux..) -Hoạt động trên nhiều môi trường ứng dụng (như J2ME, .NET) -Hoạt động trên nhiều phương thức mã hoá vô tuyến (như cdma2000, GPRS, GSM, W-CDMA, WiFi ….) -Hoạt động trên nhiều phương thức mã hoá (tiếng nói, hình ảnh…). -Hoạt động trên nhiều phạm vi giao thức mạng (Ipv4, IPv6 …) -Bộ vi xử lý mạng với các ứng dụng của di động và tính năng chung của PC.

-Có bộ nhớ lớn.

2.3.1.2 Điểm truy nhập vô tuyến RAP (Radio Access Point)

Chức năng chính của RAP là thực hiện xử lý lớp 1 của giao diện vô tuyến (mã hóa kênh, đan xen, thích ứng tốc độ, trải phổ, …). Nó cũng thực hiện một phần khai thác quản lý tài nguyên vô tuyến như điều khiển công suất vòng trong. Điểm truy nhập vô tuyến cũng tương tự như Node B trong 3G, tuy nhiên có một số kỹ thuật mới nhằm làm tăng tốc độ đường truyền, đó là:

+ Sử dụng Anten thông minh

Anten thông minh là một hệ thống gồm hai hay nhiều anten (phần tử của dãy) được bố trí phù hợp về mặt hình học và kết nối liên thông về điện để tạo ra một giản đồ phát xạ định hướng mong muốn. Đối với dãy anten điều khiển pha, pha của các dòng điện ở mỗi phần tử anten sẽ được điều khiển để thu được giản đồ phủ sóng của dãy, thường là tập trung búp sóng lớn nhất hoặc nhỏ nhất theo các hướng mong muốn. Điều khiển pha dòng điện của các phần tử trong dãy là phương thức để điều chỉnh hướng búp sóng.

Một hệ thống anten thông minh bao gồm một dãy anten, với phần cứng vô tuyến và khối điều khiển để thay đổi giản đồ phủ sóng theo điều kiện môi trường vô tuyến nhằm tăng cường hiệu năng của một hệ thống thông tin.

Thực ra, trong hệ thống Anten thông minh, bản thân các phần tử Anten không thông minh, mà sự thông minh được tạo ra do quá trình xử lý số tín hiệu các tín hiệu đến các phần tử Anten.

Anten thông minh là một thành phần không thể thiếu được trong mạng 4G. Một hệ thống anten thông minh là sự kết hợp của nhiều phần tử anten với một khả năng xử lý tín hiệu để tự động tối ưu mẫu thu và bức xạ của nó dựa vào sự hồi đáp của môi trường tính hiệu. Hệ thống 3.5G dùng Truy nhập gói đường xuống tốc độ cao (HSDPA

– High Speed Downlink Packet Access) dựa trên công nghệ giao diện vô tuyến W- CDMA dự định cung cấp tốc độ lên đến 10 Mbps bằng cách sử dụng hiệu quả hơn phổ tần số 3G hiện hành. Hệ thống 4G sẽ dùng một phổ tần khác (có thể là 40 hoặc 60 GHz) và có thể cung cấp lên đến 100 Mbps cho tế bào WAN và đến 1 Gbps đối với truy suất không dây nội bộ.

Mục đích của hệ thống anten thông minh là để làm tăng chất lượng tín hiệu của hệ thống vô tuyến bằng cách truyền tập trung các tín hiệu vô tuyến trong khi tăng dung lượng bằng cách tăng việc dùng lại tần số. Bảng sau sẽ liệt kê các đặc tính và lợi ích của một hệ thống anten thông minh.

Bảng 2.1 Các đặc tính và lợi ích của ăngten thông minh


Một trong những kĩ thuật thích ứng liên kết sẽ được đề cập đến gọi 2

+ Một trong những kĩ thuật thích ứng liên kết sẽ được đề cập đến gọi là điều chế và mã hóa thích ứng (AMC – Adaptation and Modulation Coding).Với kĩ thuật AMC, điều chế và tỉ lệ mã hóa được thích ứng một cách liên tục và chất lượng kênh thay cho việc điều chỉnh công suất. Truyền dẫn sử dụng nhiều mã Walsh cũng được sử dụng trong quá trình thích ứng liên kết. Sự kết hợp của hai kỹ thuật thích ứng liên kết trên

đã thay thế hoàn toàn kỹ thuật hệ số trải phổ biến thiên của truyền dẫn vô tuyến tốc độ cao.

+ Ghép kênh phân chia tần số trực giao OFDM: Tín hiệu gửi đi được chia thành các sóng mang nhỏ, trên mỗi sóng mang đó tín hiệu là “băng hẹp” và vì vậy tránh được hiệu ứng đa đường, tạo nên một khoảng bảo vệ chèn vào giữa mỗi tín hiệu OFDM.OFDM cũng tạo nên một độ lợi về phân tập tần số, cải thiện hiệu năng của lớp vật lý. Nó cũng tương thích với những công nghệ mở rộng nâng cao khác, như là các anten thông minh và MIMO. Điều này không chỉ tạo nên lợi ích rõ ràng cho thực thi lớp vật lý, mà còn hợp nhất việc cải thiện hiệu năng lớp 2 nhờ việc đưa ra thêm một mức độ tự do.

Hình 2 6 Nguyên lý OFDM MIMO MIMO sử dụng ghép kênh tín hiệu giữa rất nhiều 3

Hình 2.6 Nguyên lý OFDM

+ MIMO: MIMO sử dụng ghép kênh tín hiệu giữa rất nhiều các anten phát và thời gian hay tần số. Nó kết hợp với OFDM xử lý các tín hiệu thời gian độc lập ngay khi dạng sóng OFDM được thiết kế chính xác cho kênh. Sự kết hợp giữa OFDM và MIMO giúp cho việc xử lý đơn giản hơn, hiệu quả thu phát cao.

Ngoài ra lớp thâm nhập dịch vụ còn sử dụng thêm một số kỹ thuật khác như kỹ thuật SDR,… để tăng thêm tính thích nghi cho UE trong môi trường mạng tích hợp chung.

2.3.1.3 Bộ điều khiển truy nhập vô tuyến RAC (Radio Access Controller)

Bộ điều khiển truy nhập vô tuyến (RAC) là phần tử điều khiển của lớp truy nhập vô tuyến. Chức năng RNC dùng để điều khiển lưu lượng và quản lý tài nguyên vô tuyến của lớp thâm nhập vô tuyến.

Đối với một UE thì RAC thực hiện kết cuối cả đường nối Iu để truyền số liệu người sử dụng và cả báo hiệu tương ứng từ/tới mạng lõi. RAC cũng kết cuối báo hiệu điều khiển tài nguyên vô tuyến, xử lý số liệu lớp đoạn nối số liệu từ/tới giao diện vô

tuyến. Các thao tác quản lý tài nguyên vô tuyến như sắp xếp các thông số vật mang thâm nhập vô tuyến với các thông số kênh truyền tải giao diện vô tuyến.

Chức năng quản lý tài nguyên vô tuyến: RRM (Radio Resources Management) là một tập hợp các thuật toán được sử dụng để đảm bảo sự ổn định của đường truyền vô tuyến và QoS của kết nối vô tuyến bằng cách chia sẻ và quản lý tài nguyên vô tuyến một cách có hiệu quả.

Trong 4G, thêm một số kỹ năng mới như yêu cầu phát lại tự động nhanh (HARQ: Hybrid Automatic Repeat Request), lập lịch nhanh, thời gian phát truyền dẫn ngắn (TTI: Transmission Time Interval). Hai tính năng quan trọng nhất của công nghệ WCDMA như điều khiển công suất vòng kín và hệ số trải phổ biến thiên không còn được sử dụng.

2.3.2 Lớp mạng lõi

Mạng lõi phải tích hợp được tất cả các mạng viễn thông khác như các mạng di động, WLAN, WiMAX, các mạng không dây khác,… Để đạt được điều đó thì trong mạng lõi phải có:

Nhờ sự phát triển mạnh mẽ của NGN trên toàn cầu, người ta xây dựng hệ thống truyền dẫn trong mạng lõi sử dụng giao thức IPv6, đặc biệt việc sử dụng IP di động một cách linh hoạt giúp cho việc kết hợp giữa các mạng.

Cổng đa phương tiện (MGW: Multimedia Gateway): Trong mạng lõi, MGW thực hiện các chức năng chính là:

Thực hiện chuyển đổi dữ liệu sang gói IP và ngược lại.

Thực hiện chức năng chuyển mạch, định tuyến dữ liệu từ/tới một vùng dịch vụ của mạng tuỳ thuộc vào vị trí thuê bao. MGW được điều khiển bởi MGCF. Đường truyền cho các cuộc gọi được thực hiện giữa RNC và MGW. Thông thường MGW nhận các cuộc gọi từ RNC, chuyển đổi dữ liệu theo định dạng gói IP và định tuyến các cuộc gọi này đến nơi nhận trên các đường trục gói. Trong nhiều trường hợp đường trục gói sử dụng “Giao thức truyền tải thời gian thực”(RTP: Real Time Transport Protocol) trên “Giao thức Internet” (IP).

Ở nơi mà một cuộc gọi cần chuyển đến một mạng khác, PTSN chẳng hạn, có một cổng các phương tiện khác (MGW), MGW này sẽ chuyển tiếng thoại đóng gói thành PCM tiêu chuẩn để đưa đến PTSN. Như vậy chuyển đổi mã chỉ cần thực hiện tại điểm

Xem toàn bộ nội dung bài viết ᛨ

..... Xem trang tiếp theo?
⇦ Trang trước - Trang tiếp theo ⇨

Ngày đăng: 21/02/2023