Through Table 2.7, we remove the observed variable CT2: "Bank employees serve all customers fairly when they come to the transaction" because there is a correlation coefficient of the total variable less than 0.3. In addition, all the remaining observed variables have a total correlation coefficient greater than 0.3. All coefficients Cronbach's Alpha if the variable type is not greater than Cronbach's Alpha. Besides, all Cronbach's Alphas are greater than 0.6. The above results have met the requirements for evaluating a reliable scale.
2.2.2.2. EFA . exploratory factor analysis
- Factor analysis of independent variables
Before conducting exploratory factor analysis to extract the factors affecting the quality of lending services for science and technology at NCB - Hue from observed variables, I tested the appropriateness of the data. data through the KMO test (Kaiser - Meyer - Olkin) has a value of 0.5 or more and Bartlett's test results in p-value less than 0.05. From the collected data, I conduct exploratory factor analysis. We hypothesize H0: there is no relationship between the observed variables.
Table 2.8: KMO and Bartlett's Test
KMO and Bartlett's Test | ||
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.814 | |
Bartlett's Test of Sphericity | Approx. Chi-Square | 1199,470 |
DF | 253 | |
Sig. | 0.000 |
Maybe you are interested!
- General Introduction About National Commercial Joint Stock Bank
- Situation Of Assets And Capital Of National Commercial Joint Stock Bank Hue Branch For The Period 2015-2017
- Evaluation Of The Quality Of Lending Services For Retail Customers At National Commercial Joint Stock Bank , Hue Branch
- Customer's Assessment Of Service Quality Factors For Individual Customers At National Commercial Joint Stock Bank , Hue Branch
- Orientation To Improve The Quality Of Lending Services For Individual Customers At National Commercial Joint Stock Bank , Hue Branch
- Evaluation of loan service quality for individual customers at National Commercial Joint Stock Bank - 10
Source: SPSS data processing
With the KMO test result of 0.814 is greater than 0.5 and Sig. of Bartlett's test is less than 0.05 (observed variables are correlated with each other in the population), thus rejecting H0. The results of EFA analysis showed 5 basic factors. The total variance extracted is 61.555% > 50%, indicating that these 5 factors explain 61.555% of the data variation and the Eigenvalues of the factors are all greater than 1. Bartlett's test has Sig value. = 0.000 < 0.05 should meet the requirements. In this test, no variable is excluded from the model because the factor loading system is > 0.5.
The result has 5 factors with the total variance extracted is 61.555%; ie, the ability to use these 5 factors to explain 23 observed variables is 61.555% (> 50%).
This group of 5 factors is described as follows:
Table 2.9: Result of independent variable factor analysis
Sign | Observed variables | Factor loading factor | ||||
first | 2 | 3 | 4 | 5 | ||
NLPV1 | The bank promptly and fully responded to your loan amount. | 0.838 | ||||
NLPV4 | Credit staff fully knowledgeable about banking products and services | 0.800 | ||||
NLPV3 | Credit staff answer all your questions enthusiastically and fully | 0.739 | ||||
NLPV2 | Credit officers handle loan procedures quickly | 0.729 | ||||
NLPV5 | The bank has a hotline serving 24/7 | 0.681 | ||||
DU3 | Time to review documents, disburse quickly and timely | 0.824 | ||||
DU2 | Flexible and suitable loan terms and conditions | 0.704 | ||||
DU1 | Simple and clear loan process and procedures | 0.695 | ||||
DU5 | Reasonable and competitive loan interest rates and service fees | 0.693 | ||||
DU4 | Credit officers provide full information about personal loan services | 0.677 | ||||
TC3 | The credit officer executes the transaction correctly | 0.751 | ||||
TC2 | The bank builds trust and peace of mind for you. | 0.744 | ||||
TC1 | The bank performs the loan service as committed | 0.734 | ||||
TC4 | Credit officers protect your personal information well | 0.694 |
TC5 | The bank satisfactorily handles your complaints satisfactorily | 0.587 | ||||
PTTH4 | Bank staff have neat and polite clothes | 0.831 | ||||
PTH3 | Banks arrange transaction counters, reasonable and convenient signs | 0.826 | ||||
PTTH1 | The bank has a convenient transaction location | 0.731 | ||||
PTTH2 | The bank has modern facilities and equipment | 0.545 | ||||
CT3 | The credit officer executes the transaction correctly | 0.850 | ||||
CT4 | Credit officers protect your personal information well | 0.775 | ||||
CT1 | The bank performs the loan service as committed | 0.721 | ||||
CT5 | The bank satisfactorily handles your complaints satisfactorily | 0.669 | ||||
Eigenvalues | 5,809 | 2.949 | 2.465 | 1.618 | 1.315 | |
Misquote (%) | 25,259 | 38,082 | 48,801 | 55,836 | 61,555 | |
Cumulative Variance (%) | 25,259 | 12,824 | 10,718 | 7,035 | 5.719 |
Source: SPSS data processing
The first factor is drawn with the Eigenvalue = 5,809, which explains 25.259% of the variation of the data. This factor has Factor Loading index with variables NLPV1 has Factor Loading of 0.838, NLVP2 has Factor Loading 0.729, NLPV3 has Factor Loading 0.739, NLPV4 has Factor Loading of 0.800, NLPV5 has Factor Loading of 0.681. This factor should be named Service Capacity, denoted by NLPV.
The second factor is drawn with Eigenvalue = 2.949, this factor explains 38.082% of the variation of the data. This factor has a Factor Loading index with variables DU1 has a Factor Loading of 0.695, DU2 has a Factor Loading of 0.704, DU3 has a Factor Loading of 0.824, DU4 has a Factor Loading of 0.677, DU5 has a Factor Loading of 0.693.
This factor should be named Responsiveness, denoted by DU.
The third factor is drawn with Eigenvalue = 2,465, which explains 48,801% of the variation of the data. This factor has Factor Loading index with variables TC1 has Factor Loading of 0.734, TC2 has Factor Loading 0.744, TC3 has Factor Loading 0.751, TC4 has Factor Loading of 0.694, TC5 has Factor Loading of 0.587. This factor should be named Confidence level, denoted TC.
The fourth factor is drawn with Eigenvalue = 1.618, which explains 55.836% of the variation of the data. This factor has Factor Loading index with variables PTHH1 has Factor Loading of 0.731, PTHH2 has Factor Loading 0.545, PTHH3 has Factor Loading 0.826, PTHH4 has Factor Loading 0.831 . Should name this factor as Tangible means, denoted by PTHH.
The fifth factor is drawn with Eigenvalue = 1.315, which explains 61.555% of the variation of the data. This factor has a Factor Loading index with variables CT1 has a Factor Loading of 0.721, CT3 has a Factor Loading of 0.850, CT4 has a Factor Loading of 0.775, and CT5 has a Factor Loading of 0.669. This factor should be named Sympathy Level, denoted by CT.
- Factor analysis of dependent variable
We hypothesize H0: there is no relationship between the observed variables of the general satisfaction scale on the quality of science and technology lending services. KMO test is 0.685 > 0.5 and and Sig. of Bartlett's test is less than 0.05, thus rejecting H0. Thus, between the observed variables there is a large enough relationship needed for exploratory factor analysis.
Table 2.10: KMO and Bartlett's Test of Dependent Variables
KMO and Bartlett's Test | ||
Kaiser-Meyer-Olkin Measure of Sampling Adequacy. | 0.685 | |
Bartlett's Test of Sphericity | Approx. Chi-Square | 87,800 |
DF | 3 | |
Sig. | 0.000 |
Source: Data processing using SPSS
Table 2.11: Results of factor analysis of dependent variable
Sign | Observed variables | Factor loading factor |
HL3 | Would you recommend the Bank's personal loan service to others? | 0.831 |
HL1 | In general, you are satisfied with the quality of the Bank's personal loan service | 0.826 |
HL2 | In the coming time, will you continue to use the personal loan service of the Bank? | 0.787 |
Eigenvalues | 1,992 | |
Extracted Variance (%) | 66.392 |
Source: Data processing using SPSS
The drawn factors have factor loading coefficients all > 0.5. Factor loading coefficients are all high, variables in the same group all have strong load on the factor it measures, the smallest is 0.787. Therefore, not a single component is removed. The total variance extracted is 66.392% > 50%, showing that the explanation is quite high.
The results also show that one factor is extracted and Eigenvalue > 1. There is no separation or displacement of the factors, so there is no change in the number of factors. This factor is drawn with the Eigenvalue = 1,992, this factor explains 66,392% of the variation of the data. This factor has Factor Loading index with variables HL1 has Factor Loading of 0.826, HL2 has Factor Loading 0.787, HL3 has Factor Loading 0.831. This factor should be named Satisfaction, denoted by HL.
2.2.2.3. Regression analysis
- Correlation analysis
The first step in linear regression analysis is to consider the linear correlations between the dependent variable and each independent variable, as well as between the independent variables. The larger the correlation coefficient between the independent variable and the dependent variable, the greater the linear relationship, and the linear regression analysis can be suitable. On the other hand, if there is also a large correlation between the independent variables, it is also a sign that multicollinearity may occur between them in the model we are considering.
Table 2.12: Testing the correlation between independent variable and dependent variable
HL | NLPV | DU | TC | PTH | CT | ||
HL | Correlation coefficients | first | |||||
Sig. | |||||||
NLPV | Correlation coefficients | 0.32 | first | ||||
Sig. | 0.00 | ||||||
DU | Correlation coefficients | 0.426 | 0.00 | first | |||
Sig. | 0.00 | 0,500 | |||||
TC | Correlation coefficients | 0.433 | 0.00 | 0.00 | first | ||
Sig. | 0.00 | 0.00 | 0,500 | ||||
PTH | Correlation coefficients | 0.285 | 0,500 | 0.00 | 0.00 | first | |
Sig. | 0.00 | 0.00 | 0,500 | 0,500 | |||
CT | Correlation coefficients | -0.092 | 0.00 | 0.00 | 0.00 | 0.00 | first |
Sig. | 0.148 | 0,500 | 0,500 | 0,500 | 0,500 |
Source: Data processing using SPSS
Table 2.12 shows that all variables have Sig significance level. < 0.05, except for the variable Level of sympathy with significance Sig. > 0.05 means that the variable Level of sympathy is not correlated with the variable Satisfaction. Therefore, remove the Sympathy variable from the model before regression analysis. After conducting exploratory factor analysis, grouping variables according to each factor, we conduct regression. The applied regression model is a multivariable regression model (multiple regression model) to consider the relationship between the dependent variable and the independent variables. When analyzing regression, the results will show the factors affecting satisfaction when using science and technology lending services at NCB-Hue and their impact level.
Specifically, regression analysis was performed with 4 independent variables: (1) Service capacity, (2) Responsiveness, (3) Reliability, (4) Tangible means and auxiliary variables. of satisfaction. One-pass input method (Enter method) was used for regression analysis. The values of the factors used to run the regression are the mean values from the factors. The model is written as follows:
HL= 0 + 1*NLPV + 2*DU + 3*TC + 4*PTHH
Inside:
0: coefficient of freedom
ßi: partial regression coefficient corresponding to independent variables.
HL: the value of the dependent variable is customer satisfaction about the quality of science and technology lending services
NLPV: The first independent variable value is Service capacity
DU: The second independent variable value is Responsiveness
TC: The third independent variable value is Confidence level
PTTH: The fourth independent variable value is Tangible Means
- Evaluate the fit of the regression model
To evaluate the fit of the model, we use the adjusted coefficient of determination R2. The coefficient of determination R2 adjusted for this model is 55.3%, showing that 4 independent variables in the model explain 55.3% of the variation of the dependent variable. With this value, the fit of the model is acceptable.
Table 2.13: Summary model using the Enter . method
Paradigm | CHEAP | R2 | R2 adjustable | Standard error of the estimate | Durbin-Watson |
first | 0.744 | 0.553 | 0.539 | 0.67893804 | 1,713 |
Source: Data processing using SPSS